Electronic Supplementary Information

The Development of Supramolecular Assemblies for Photocatalytic Hydrogen Generation from Water.

¹H NMR spectroscopy

Figure S1: ¹H NMR spectrum of [Ru(bpy)₂(2,3-dpp)]²⁺ in acetone-d₆.

Figure S2: ¹H NMR spectrum of [Ru(dceb)₂(2,3-dpp)]²⁺ in acetone-d₆.

Figure S3: ¹H NMR spectrum of [Ru(bpy)₂(2,3-dpp)Ptl₂]²⁺ in acetone-d₆.

Figure S4: ¹H NMR spectrum of [Ru(bpy)₂(2,3dpp)PtCl₂]²⁺ in acetone-d₆.

Figure S5: ¹H NMR spectrum of [Ru(dceb)₂(2,3-dpp)Ptl₂]²⁺ in acetone-d₆.

Figure S6: ¹H NMR spectrum of [Ru(dceb)₂(2,3-dpp)PtCl₂]²⁺ in acetone-d₆.

Figure S7: ¹HNMR spectrum of [Pt(2,3dpp)Cl₂] in dmso-d₆.

Figure S8: ${}^{1}H{}^{-1}H$ COSY spectrum of [Ru(bpy)₂(2,3-dpp)Ptl₂]²⁺ in acetone-d₆.

Resonance Raman Spectroscopy

Figure S9: RR spectra (normalised) of $[Ru(bpy)_3]^{2+}$ (blue, λ_{exc} . 473 nm) and $[Ru(bpy)_2(2,3-dpp)]^{2+}$ (red λ_{exc} . 457 nm and green λ_{exc} . 473 nm) in acetonitrile.

Figure S10a: RR spectra (normalised) of $[Ru(bpy)_3]^{2+}$ (purple, λ_{exc} . 473 nm) and $[Ru(bpy)_2(2,3dpp)PtCl_2]^{2+} \lambda_{exc}$. 355 nm (blue), 457 nm (red) and 473 nm (green) in acetonitrile.

Figure S10b: RR spectra (normalised) of $[Ru(bpy)_3]^{2+}$ (purple, λ_{exc} . 473 nm) and $[Ru(bpy)_2(2,3dpp)PtI_2]^{2+} \lambda_{exc}$. 355 nm (blue), 457 nm (red) and 473 nm (green) in acetonitrile.

ESI-MS data

m/z peaks Complex	$[M-PF_6]^+$	[M-2PF ₆] ²⁺	[M-2PF ₆ -PtX ₂] ²⁺	Additional prominent peaks*
[Ru(bpy) ₂ (2,3dpp)] ²⁺	793.3 (792.7)	324.2 (323.9)	-	-
[Ru(bpy) ₂ (2,3dpp)PtCl ₂] ²⁺	1059.0 (1058.7)	456.7 (456.8)	326.0 (323.9)	248.3, 265.6, 402.3, 658.3
$[Ru(bpy)_2 (2,3dpp)Ptl_2]^{2+}$	1241.1 (1241.5)	548.7 (548.3)	-	569.2, 779.7
[Ru(dceb) ₂ (2,3dpp)] ²⁺	1081.4 (1080.9)	468.4 (467.8)	-	-
$[Ru(dceb)_2 (2,3dpp)Ptl_2]^{2+}$	1531.2 (1529.8)	692.5 (692.4)	468.4 (467.8)	1349.5, 1258.7, 971,3, 824.4
[Ru(phen) ₂ (2,3dpp)] ²⁺	840.3 (840.7)	348.3 (347.9)	-	234.5
[Ru(phen) ₂ (2,3dpp)PtCl ₂] ²⁺	1106.2 (1106.7)	481.3 (480.9)	-	689.9
$[Ru(phen)_2 (2,3dpp)Ptl_2]^{2+}$	1290.6 (1289.6)	572.7 (572.32)	348.3 (347.9)	593.6, 1465.8, 1270.9

Table S1 Prominent m/z peaks in the mass spectra of the 2,3dpp based complexes and their assignment to the calculated mol fragments (in brackets); (M = total molar mass, m/z = mass-to-charge ratio, $X = CI^{-}$, Γ , * = peaks that couldn't be assigned to calc. mol fragments)