Thioether-Triphenolate Bimetallic Iron(III) Complexes as Robust and Highly Efficient Catalysts for Cycloaddition of Carbon Dioxide to Epoxides

Antonio Buonerba,^{ab} Francesco Della Monica,^a Assunta De Nisi,^c Ermanno Luciano,^a Stefano Milione,^{ab} Alfonso Grassi,^{ab} Carmine Capacchione^{*ab} and Bernhard Rieger^d

^a Dipartimento di Chimica e Biologia, Università degli Studi di Salerno, via Giovanni Paolo II
132, 84084 Fisciano (SA), Italy.

^b CIRCC, Interuniversity Consortium Chemical Reactivity and Catalysis, Via Celso Ulpiani 27, 70126 Bari, Italy

^c Dipartimento di Chimica G. Ciamician, Alma Mater Studiorum, Università di Bologna, via Selmi2, Bologna, Italy

^{*d*} WACKER Lehrstuhl für Makromolekulare Chemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany.

* E-mail: ccapacchione@unisa.it

Table of Contents

NMR Characterization.	1
Figure S1. ¹ H NMR spectrum of the pro-ligand L_H (CD ₂ Cl ₂ , 400 MHz)	1
Figure S2. ¹³ C NMR spectrum of the pro-ligand L_H (CD ₂ Cl ₂ , 250 MHz)	2
Figure S3. ¹ H NMR spectrum of the pro-ligand L _{Cum} (CD ₂ Cl ₂ , 400 MHz)	3
Figure S4. ¹³ C NMR spectrum of the pro-ligand L_{Cum} (CD ₂ Cl ₂ , 400 MHz)	4
ESI-MS Characterization	5
Figure S5. Mass spectrum of the pro-ligand L_H (acetonitrile as solvent)	5
Figure S6. Mass spectrum of the complex C_H (acetonitrile as solvent).	6
Figure S7. Mass spectrum of the pro-ligand L _{Cum} (acetonitrile as solvent)	7
Figure S8. Mass spectrum of the complex C_{Cum} (acetonitrile as solvent).	8
FT-IR Characterization.	9
Figure S9. FT-IR spectrum of the pro-ligand L_H (KBr disk)	9
Figure S10. FT-IR spectrum of the complex C_H (KBr disk).	10
Figure S11.Comparison of the FT-IR spectra of the pro-ligand L_H (blue curve) and of the iron(III)	
complex C_H (red curve).	11
Figure S12. Magnification of the region 1450-1415 cm ^{-1} (for the CH ₂ -S-C deformation) ^{1,2} of the FT	-IR
spectra of the pro-ligand L_H (blue curve) and of the iron(III) complex C_H (red curve)	12
Figure S13. Magnification of the region 1270-1220 cm ⁻¹ (for the CH ₂ -S-C wagging) ^{1,2} of the FT-IR	
spectra of the pro-ligand L_H (blue curve) and of the iron(III) complex C_H (red curve)	13
Figure S14. Magnification of the region 680-600 cm ⁻¹ (for the C-S stretching vibration) ^{1,2} of the FT	-IR
spectra of the pro-ligand L_H (blue curve) and of the iron(III) complex C_H (red curve)	14
Figure S15. FT-IR spectrum of the pro-ligand L _{Cum} (KBr disk).	15
Figure S16. FT-IR spectrum of the complex C _{Cum} (KBr disk)	16
Figure S17.Comparison of the FT-IR spectra of the pro-ligand L_{Cum} (blue curve) and of the iron(III))
complex C _{cum} (red curve).	17

Electronic Supplementary Information

NMR Characterization.

Figure S1. ¹H NMR spectrum of the pro-ligand L_H (CD₂Cl₂, 400 MHz).

Figure S2. ¹³C NMR spectrum of the pro-ligand L_H (CD₂Cl₂, 250 MHz).

Figure S3. ¹H NMR spectrum of the pro-ligand L_{Cum}(CD₂Cl₂, 400 MHz).

Figure S4. ¹³C NMR spectrum of the pro-ligand L_{Cum} (CD₂Cl₂, 400 MHz).

Figure S5. Mass spectrum of the pro-ligand L_H (acetonitrile as solvent).

Figure S6. Mass spectrum of the complex C_H (acetonitrile as solvent).

Figure S7. Mass spectrum of the pro-ligand L_{Cum} (acetonitrile as solvent).

Figure S8. Mass spectrum of the complex C_{Cum} (acetonitrile as solvent).

Figure S9. FT-IR spectrum of the pro-ligand L_H (KBr disk).

Figure S10. FT-IR spectrum of the complex C_H (KBr disk).

Figure S11.Comparison of the FT-IR spectra of the pro-ligand L_H (blue curve) and of the iron(III) complex C_H (red curve).

Figure S12. Magnification of the region 1450-1415 cm⁻¹ (for the CH₂-S-C deformation)^{1,2} of the FT-IR spectra of the pro-ligand L_H (blue curve) and of the iron(III) complex C_H (red curve).

Figure S13. Magnification of the region 1270-1220 cm⁻¹ (for the CH₂-S-C wagging)^{1,2} of the FT-IR spectra of the pro-ligand L_H (blue curve) and of the iron(III) complex C_H (red curve).

Figure S14. Magnification of the region 680-600 cm⁻¹ (for the C-S stretching vibration)^{1,2} of the FT-IR spectra of the pro-ligand L_H (blue curve) and of the iron(III) complex C_H (red curve).

Figure S15. FT-IR spectrum of the pro-ligand L_{Cum} (KBr disk).

Figure S16. FT-IR spectrum of the complex C_{Cum} (KBr disk).

Figure S17.Comparison of the FT-IR spectra of the pro-ligand L_{Cum} (blue curve) and of the iron(III) complex C_{Cum} (red curve).

Figure S18. Magnification of the region 1450-1415 cm⁻¹ (for the CH₂-S-C deformation)^{1,2} of the FT-IR spectra of the pro-ligand L_{Cum} (blue curve) and of the iron(III) complex C_{Cum} (red curve).

Figure S19. Magnification of the region 1270-1220 cm⁻¹ (for the CH₂-S-C wagging)^{1,2} of the FT-IR spectra of the pro-ligand L_{Cum} (blue curve) and of the iron(III) complex C_{Cum} (red curve).

Figure S20. Magnification of the region 680-600 cm⁻¹ (for the C-S stretching vibration)^{1,2} of the FT-IR spectra of the pro-ligand L_{Cum} (blue curve) and of the iron(III) complex C_{Cum} (red curve).

UV-Vis Analysis.

Figure S21. UV-Vis spectrum of the complex C_H (1.07 × 10⁻⁴ M in toluene; $\varepsilon_{470} = 2804$ L mol⁻¹ cm⁻¹).

Figure S22. UV-Vis spectrum of the complex C_{Cum} (1.07 × 10⁻⁴ M in toluene; ε_{585} = 7188 L mol⁻¹ cm⁻¹).

Electronic Supplementary Information

References.

1. *The Sadtler handbook of infrared spectra*. ed. W. W. Simons, Sadtler Research Laboratories, Philadelphia, 1978.

2. Interpreting Infrared, Raman, and Nuclear Magnetic Resonance Spectra, ed. R. A. Nyquist, Academic Press, San Diego, 2001, pp. 65-83.