## Electronic Supplementary Information for:

## Carbon Dioxide Capture and Utilization: Using Dinuclear Catalysts to Prepare Polycarbonates

N. Yi,<sup>a</sup> J. Unruangsri,<sup>a</sup> J. Shaw,<sup>a</sup> C. K. Williams<sup>a\*</sup>

<sup>a</sup>Department of Chemistry, Imperial College London, London SW7 2AZ, UK

\*Corresponding author email address: c.k.williams@imperial.ac.uk

Page S2: Fig. S1 <sup>1</sup>H NMR spectrum of 1 in CDCl<sub>3</sub>

Page S3: Fig. S2 <sup>1</sup>H NMR spectrum of crude PvCHC and VCHO in CDCl<sub>3</sub>.

Page S3: Fig. S3 <sup>1</sup>H NMR spectrum of isolated PvCHC in CDCl<sub>3</sub>

Page S4: Fig. S4 SEC trace and MALDI-ToF spectrum of isolated PvCHC

Page S5: Fig. S5 SEC trace and MALDI-ToF spectrum of isolated PCHC

Page S6: Fig. S6 <sup>1</sup>H NMR spectra of separated fractions of PCHC in CDCl<sub>3</sub>

Page S7: Fig. S7 SEC trace and MALDI-ToF spectrum of high  $M_n$  fraction of PCHC

Page S8: Fig. S8 SEC trace of isolated PCHC using 10 equiv. CHD

Page S9: Fig. S9 <sup>1</sup>H NMR spectrum of isolated PCHC using 20 equiv. TEA in CDCl<sub>3</sub>

Page S10: Fig. S10  ${}^{31}P{}^{1}H$  NMR spectra of the products of the reactions between the amine reagent (H<sub>2</sub>NBn, A) or polymer end groups (B-D) and 2-chloro-4,4,5,5-tetramethyl dioxaphospholane.

Page S11: Fig. S11 MALDI-ToF spectrum of isolated PCHC using 20 equiv. TEA

Page S12: Fig. S12 SEC trace of isolated PCHC produced by 1 using 20 equiv. HNBn<sub>2</sub>

Page S12: References

## 1. Results



**Figure S1.** <sup>1</sup>H NMR (400.0 MHz,  $CDCl_3-d_1$ , 298 K) spectrum of  $LZn_2(O_2CCF_3)_2$  (1). The asterisk denotes the residual protio-solvent.



**Figure S2.** Top: <sup>1</sup>H NMR (400.0 MHz,  $CDCl_3-d_1$ , 298 K) spectrum of crude poly(vinyl-cyclohexene oxide) reaction mixture. Bottom: <sup>1</sup>H NMR (400.0 MHz,  $CDCl_3-d_1$ , 298 K) spectrum of vinyl cyclohexene oxide monomer. The conversion of V-CHO to PVCHC was calculated by the ratio of integration of c to the integration of d+d'. The asterisk denotes the residual protio-solvent.



**Figure S3.** <sup>1</sup>H NMR (400.0 MHz, CDCl<sub>3</sub>- $d_1$ , 298 K) spectrum of isolated poly(vinyl-cyclohexene oxide) (PvCHC,  $M_n = 6,700 \text{ gmol}^{-1}$ ). The asterisk denotes the residual protio-solvent.



**Figure S4.** Bimodal molecular weight distribution of the isolated PvCHC polymer (Table 1 Entry 4), obtained by SEC using narrow  $M_w$  polystyrene calibration.



**Figure S5.** Top: bimodal molecular weight distribution of the isolated PCHC polymer (Table 1 Entry 2), obtained by SEC using narrow  $M_w$  polystyrene calibration. Bottom: MALDI-ToF spectrum of the PCHC produced in Table 1 Entry 2, showing the polyol series  $[HO(C_7H_{10}O_3)_nC_6H_{11}O_2]K^+ = [(142.15)_n+116.16+39.1]$ 



**Figure S6.** <sup>1</sup>H NMR (400.0 MHz, CDCl<sub>3</sub>- $d_1$ , 298 K) spectra of separated fractions (Top: low  $M_n$  fraction, Bottom: high  $M_n$  fraction) of PCHC produced in Table 1 Entry 2. The asterisks denote the residual solvent.



**Figure S7.** Top: molecular weight distribution of the isolated high  $M_n$  fraction of PCHC polymer (Table 1 Entry 2), obtained by SEC using narrow  $M_w$  polystyrene calibration. Bottom: MALDI-ToF spectrum of the high  $M_n$  fraction of the PCHC produced in Table 1 Entry 2, showing the polyol series  $[HO(C_7H_{10}O_3)_nC_6H_{11}O_2]K^+ = [(142.15)_n+116.16+39.1]$ 



**Figure S8.** Monomodal molecular weight distribution of the PCHC polymer using 10 equiv. CHD in the polymerization (Table 3 Entry 2), obtained by SEC using narrow  $M_w$  polystyrene calibration.



**Figure S9.** <sup>1</sup>H NMR (400.0 MHz,  $CDCl_3-d_1$ , 298 K) spectrum of isolated poly(cyclohexene oxide) produced in the polymerization with TEA additive ( $M_n = 1,500 \text{ gmol}^{-1}$ , Table 3, Entry 5). The asterisk denotes the residual protio-solvent.



**Figure S10.** <sup>31</sup>P{<sup>1</sup>H} NMR spectra (162.1 MHz, CDCl<sub>3</sub>- $d_1$ , 298 K) of the products of the reactions between the amine reagent (H<sub>2</sub>NBn, **B**) or polymer end groups (**A and B-F**) and 2-chloro-4,4,5,5-tetramethyl dioxaphospholane. The asterisks, triangle, daggers and double daggers denote resonances corresponding to the product of the dioxaphospholane with secondary alcohol ( $\delta = 145.5$  ppm), primary amine ( $\delta = 142.5$  ppm), Bisphenol A ( $\delta = 138.0$  ppm) and water ( $\delta = 132.0$  ppm), respectively.



**Figure S11.** MALDI-ToF spectrum of the isolated PCHC ( $M_n = 1,500 \text{ g mol}^{-1}$ , PDI = 1.23) produced in the polymerization with TEA additive (Table 3, Entry 5), showing the polyol series [HO(C<sub>7</sub>H<sub>10</sub>O<sub>3</sub>)<sub>n</sub>C<sub>6</sub>H<sub>11</sub>O<sub>2</sub>]K<sup>+</sup> = [(142.15)<sub>n</sub>+116.16+39.1.



**Figure S12.** Combined SEC traces of PCHC produced using 20 equiv. HNBn<sub>2</sub> in Table 3 Entry 5, with RI detection (red) and UV detection (blue), using THF as the eluent.

## 2. References

1. M. R. Kember, J. Copley, A. Buchard and C. K. Williams, *Polym. Chem.*, 2012, **3**, 1196-1201.