Electronic Supplementary Information for:

Carbon Dioxide Capture and Utilization: Using Dinuclear Catalysts to Prepare Polycarbonates

N. Yi, ${ }^{\text {a }}$ J. Unruangsri, ${ }^{\text {a }}$ J. Shaw, ${ }^{\text {a }}$ C. K. Williams ${ }^{\text {a }}$
${ }^{\text {a Department of Chemistry, Imperial College London, London SW7 2AZ, UK }}$
*Corresponding author email address: c.k.williams@imperial.ac.uk

Page S2: Fig. S1 ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1}$ in CDCl_{3}

Page S3: Fig. S2 ${ }^{1} \mathrm{H}$ NMR spectrum of crude PvCHC and VCHO in CDCl_{3}.
Page S3: Fig. S3 ${ }^{1} \mathrm{H}$ NMR spectrum of isolated PvCHC in CDCl_{3}
Page S4: Fig. S4 SEC trace and MALDI-ToF spectrum of isolated PvCHC
Page S5: Fig. S5 SEC trace and MALDI-ToF spectrum of isolated PCHC
Page S6: Fig. S6 ${ }^{1} \mathrm{H}$ NMR spectra of separated fractions of PCHC in CDCl_{3}
Page S7: Fig. S7 SEC trace and MALDI-ToF spectrum of high M_{n} fraction of PCHC
Page S8: Fig. S8 SEC trace of isolated PCHC using 10 equiv. CHD
Page S9: Fig. S9 ${ }^{1} \mathrm{H}$ NMR spectrum of isolated PCHC using 20 equiv. TEA in CDCl_{3}
Page S10: Fig. S10 ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of the products of the reactions between the amine reagent $\left(\mathrm{H}_{2} \mathrm{NBn}, \mathrm{A}\right)$ or polymer end groups (B-D) and 2-chloro-4,4,5,5-tetramethyl dioxaphospholane.

Page S11: Fig. S11 MALDI-ToF spectrum of isolated PCHC using 20 equiv. TEA
Page S12: Fig. S12 SEC trace of isolated PCHC produced by $\mathbf{1}$ using 20 equiv. HNBn_{2}
Page S12: References

1. Results

Figure S1. ${ }^{1} \mathrm{H}$ NMR ($400.0 \mathrm{MHz}, \mathrm{CDCl}_{3}-d_{1}, 298 \mathrm{~K}$) spectrum of $\mathrm{LZn}_{2}\left(\mathrm{O}_{2} \mathrm{CCF}_{3}\right)_{2}(\mathbf{1})$. The asterisk denotes the residual protio-solvent.

Figure S2. Top: ${ }^{1} \mathrm{H}$ NMR ($400.0 \mathrm{MHz}, \mathrm{CDCl}_{3}-d_{l}, 298 \mathrm{~K}$) spectrum of crude poly(vinyl-cyclohexene oxide) reaction mixture. Bottom: ${ }^{1} \mathrm{H}$ NMR ($400.0 \mathrm{MHz}, \mathrm{CDCl}_{3}-d_{1}, 298 \mathrm{~K}$) spectrum of vinyl cyclohexene oxide monomer. The conversion of V-CHO to PVCHC was calculated by the ratio of integration of c to the integration of $\mathrm{d}+\mathrm{d}$ '. The asterisk denotes the residual protio-solvent.

Figure S3. ${ }^{1} \mathrm{H}$ NMR ($400.0 \mathrm{MHz}, \mathrm{CDCl}_{3}-d_{1}, 298 \mathrm{~K}$) spectrum of isolated poly(vinyl-cyclohexene oxide) (PvCHC, $M_{n}=6,700 \mathrm{gmol}^{-1}$). The asterisk denotes the residual protio-solvent.

Figure S4. Bimodal molecular weight distribution of the isolated PvCHC polymer (Table 1 Entry 4), obtained by SEC using narrow M_{w} polystyrene calibration.

Figure S5. Top: bimodal molecular weight distribution of the isolated PCHC polymer (Table 1 Entry 2), obtained by SEC using narrow M_{w} polystyrene calibration. Bottom: MALDI-ToF spectrum of the PCHC produced in Table 1 Entry 2, showing the polyol series $\left[\mathrm{HO}\left(\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{O}_{3}\right)_{\mathrm{n}} \mathrm{C}_{6} \mathrm{H}_{11} \mathrm{O}_{2}\right] \mathrm{K}^{+}=$ [(142.15) $\left.{ }_{\mathrm{n}}+116.16+39.1\right]$

Figure S6. ${ }^{1} \mathrm{H}$ NMR ($400.0 \mathrm{MHz}, \mathrm{CDCl}_{3}-d_{1}, 298 \mathrm{~K}$) spectra of separated fractions (Top: low M_{n} fraction, Bottom: high M_{n} fraction) of PCHC produced in Table 1 Entry 2. The asterisks denote the residual solvent.

Figure S7. Top: molecular weight distribution of the isolated high M_{n} fraction of PCHC polymer (Table 1 Entry 2), obtained by SEC using narrow M_{w} polystyrene calibration. Bottom: MALDI-ToF spectrum of the high M_{n} fraction of the PCHC produced in Table 1 Entry 2, showing the polyol series $\left[\mathrm{HO}\left(\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{O}_{3}\right)_{\mathrm{n}} \mathrm{C}_{6} \mathrm{H}_{11} \mathrm{O}_{2}\right] \mathrm{K}^{+}=\left[(142.15)_{\mathrm{n}}+116.16+39.1\right]$

Figure S8. Monomodal molecular weight distribution of the PCHC polymer using 10 equiv. CHD in the polymerization (Table 3 Entry 2), obtained by SEC using narrow M_{w} polystyrene calibration.

Figure S9. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400.0 \mathrm{MHz}, \mathrm{CDCl}_{3}-d_{1}, 298 \mathrm{~K}\right)$ spectrum of isolated poly(cyclohexene oxide) produced in the polymerization with TEA additive $\left(M_{n}=1,500 \mathrm{gmol}^{-1}\right.$, Table 3, Entry 5). The asterisk denotes the residual protio-solvent.

$$
\mathrm{R}=\text { polymeryl; } \mathrm{R}^{\prime}=\text { alkyl }
$$

B

Figure S10. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra $\left(162.1 \mathrm{MHz}, \mathrm{CDCl}_{3}-d_{1}, 298 \mathrm{~K}\right)$ of the products of the reactions between the amine reagent $\left(\mathrm{H}_{2} \mathrm{NBn}, \mathbf{B}\right)$ or polymer end groups (\mathbf{A} and $\mathbf{B - F}$) and 2-chloro-4,4,5,5tetramethyl dioxaphospholane. The asterisks, triangle, daggers and double daggers denote resonances corresponding to the product of the dioxaphospholane with secondary alcohol ($\delta=145.5 \mathrm{ppm}$), primary amine $(\delta=142.5 \mathrm{ppm})$, Bisphenol A $(\delta=138.0 \mathrm{ppm})$ and water $(\delta=132.0 \mathrm{ppm})$, respectively.

Figure S11. MALDI-ToF spectrum of the isolated $\operatorname{PCHC}\left(M_{n}=1,500 \mathrm{~g} \mathrm{~mol}^{-1}, \mathrm{PDI}=1.23\right)$ produced in the polymerization with TEA additive (Table 3, Entry 5), showing the polyol series $\left[\mathrm{HO}\left(\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{O}_{3}\right)_{\mathrm{n}} \mathrm{C}_{6} \mathrm{H}_{11} \mathrm{O}_{2}\right] \mathrm{K}^{+}=\left[(142.15)_{\mathrm{n}}+116.16+39.1\right.$.

Figure S12. Combined SEC traces of PCHC produced using 20 equiv. HNBn_{2} in Table 3 Entry 5, with RI detection (red) and UV detection (blue), using THF as the eluent.

2. References

1. M. R. Kember, J. Copley, A. Buchard and C. K. Williams, Polym. Chem., 2012, 3, 1196-1201.
