Synthesis and Strong Photooxidation Power of a Supramolecular Hybrid comprising a Polyoxometalate and Ru(II) Polypyridyl Complex with Zinc(II)

Kenji Ohashi,^a Hiroyuki Takeda,^a Kazuhide Koike,^b and Osamu Ishitani*^a

^a Department of Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology, Ookayama 2-12-1-NE-1, Meguro-ku, Tokyo, 152-8551, Japan. E-mail: iishitani@chem.titech.ac.jp

^b National Institute of Advanced Industrial Science and Technology, Onogawa 16-1, Tsukuba, 305-8569, Japan.

Fig. S1 ³¹P NMR spectra in dmso-d₆ of **RuP** (4.4 mM) in the absence and presence of trifluoromethanesulfonic acid (160 MHz).

Fig. S2 UV-Vis absorption spectra of DMSO solutions containing (a) **RuP** (7 μ M) plus **Si-WPOM** (3.5 μ M), **RuP** (7 μ M) and **Si-WPOM**; (b) **Ru** (7 μ M) plus Zn²⁺ (3.5 μ M) plus **Si-WPOM** (3.5 μ M), **Ru** (7 μ M) plus Zn²⁺ (3.5 μ M) and **Si-WPOM** (7 μ M).

Fig. S3 Emission spectra from DMSO solutions containing RuP (7 μ M) and Si-WPOM (7 μ M) in the absence and presence of TBAPF₆ (10 mM) and RuP (7 μ M) and TBAPF₆ (10 mM) obtained at 25°C under Ar with $\lambda_{ex} = 510$ nm. The emission intensities were normalized with the absorbance at the excitation wavelength.

Fig. S4 Emission spectra from DMSO solutions containing **RuP** (7 μ M), Zn²⁺ (3.5 μ M) and **Si-WPOM** (7 μ M) in the absence and presence of TBAPF₆ (10 mM) and Ru (7 μ M), Zn²⁺ (3.5 μ M) and TBAPF₆ (10 mM) obtained at 25°C under Ar with $\lambda_{ex} = 510$ nm. The emission intensities were normalized with the absorbance at the excitation wavelength.

Fig. S5 Cyclic voltammograms of **RuP** (0.5 mM), Zn^{2+} (0.025 mM) and **Si-WPOM** (0.25 mM); **RuP** (0.5 mM) and Zn^{2+} (0.025 mM); and **RuP** (0.5 mM) obtained in DMSO solutions containing TBAPF₆ (0.1 mol dm⁻³) using a glassy carbon working electrode, a Pt counter electrode and a Ag/AgNO₃ (0.01 mol dm⁻³) reference electrode. The scan rate was 200 mV s⁻¹.

Fig. S6 Absorbance at 730 nm (red line) and the current (blue line) during flow electrolysis of a DMSO solution containing **Si-WPOM** (1.5 mM) and tetrabutylammonium hexafluorophosphate (0.1 M) using a carbon felt working electrode (surface area = 1900 cm⁻²) in a Vycor glass separator, a Ag/AgNO₃ (0.01 M) reference electrode and a Pt counter electrode located outside the separator (VF-2 flow electrolysis cell, EC-FRONTIER Inc.). The flow rate of the solution was 0.11 mL min⁻¹, and the optical pass length was 1.5 mm. The number of electrons accepted by one molecule of **Si-WPOM** was calculated using Eq. S1:

$$N = \frac{i}{CFv} (S1)$$

where *i* is the current (A), *C* is the **Si-WPOM** concentration (1.0 mM), *F* is the Faraday constant, and *v* is the flow rate (0.11 mL min⁻¹). The value of N = 1.3 was obtained at the applied voltage of -1.4 V.

Fig. S7 ESI-MS spectra (eluent; CH₃CN) of \mathbf{Ru} (4.4 mM) and Zn²⁺ (2.2 mM). Analyzed samples were disolved in DMSO.

Fig. S8 Emission spectra of DMSO solutions of **RuP** (7 μ M) in the absence and presence of Zn²⁺ (3.5 μ M) obtained at 25°C in DMSO under Ar. The excitation wavelength was 510 nm, and the emission intensities were normalized to the absorbance at the excitation wavelength.

Fig. S9 Emission spectra of DMSO solutions containing TBAPF₆ (100 mM), **RuP** (7 μ M) and Zn²⁺ (7 μ M) obtained in the presence and absence of **Si-WPOM** (7 μ M) at 25°C under Ar. The excitation wavelength was 510 nm. The emission intensities were normalized to the absorbance at the excitation wavelength.

Fig. S10 Emission spectra of DMSO solutions of TBAPF₆ (100 mM) containing **RuP** (7 μ M), Zn²⁺ (7 μ M) and **Si-WPOM** (7 μ M); **RuP** (7 μ M) and Zn²⁺ (3.5 μ M); and **RuP** (7 μ M) obtained at 25°C under Ar. The excitation wavelength was 510 nm. The emission intensities were normalized at their peaks.

Fig. S11 Steady-state analysis of the absorption spectrum before and after irradiation for 120 min (λ_{ex} = 480 nm) in an Ar-saturated DMSO solution containing **RuP** (0.05 mM), Zn²⁺ (0.025 mM) and DEOA (2 M).