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General Experimental Details

Chemicals were purchased from commercial suppliers: Sigma-Aldrich Ireland Ltd., TCI
Europe Ltd and Acros Organics and were used, unless stated, used without further purification.
Synthesis was completed, unless stated, under inert atmospheres of N2 or Ar. All microwave
reactions were carried out in 2-5 mL or 10-20 mL Biotage Microwave Vials in a Biotage

Initiator Eight EXP microwave reactor.

NMR solvents were purchased per-deuterated from Apollo Scientific. Silica chromatography
was carried out on a Teledyne Isco CombiFlash automated machine using pre-packed
RediSep® cartridges. Thin Layer Chromatography (TLC) was run using Merck Kiesegel 60
Fos4 silica plates and visualised under UV irradiation (A = 254 nm) and ethanolic ninhydrin
staining. Melting points were determined using an Electrothermal 1A900 digital apparatus.
NMR was recorded using either an Agilent DD2/LH spectrometer, at 400.1 MHz and 100.6
MHz for *H and *3C experiments, respectively; or a Bruker AV-600 spectrometer at 600.1 MHz

and 150.2 MHz for H and **C experiments, respectively.

Electrospray mass spectrometry was completed using a Mass Lynz NT V 3.4 on a Waters 600
controller with 996 photodiode array detector. HPLC grade solvents were used throughout and
accurate molecular weights determined via a peak-matching method against enkephaline
standard reference (m/z = 556.2771); all accurate masses were reported within + 5 ppm of the
calculated mass. Infrared spectra were recorded on a Perkin Elmer Spectrum One FT-IR
spectrometer fitted with a universal ATR sampling accessory. Circular dichroism absorbance

spectroscopy was recorded on a Jasco J-810-150S spectropolarimeter under N2 flow.

UV-visible absorption spectra were recorded using a Varian Cary 50 spectrophotometer, with
applied baseline correction, and luminescence spectra were recorded using a Varian Cary
Eclipse spectrophotometer. Spectroscopic grade solvents (Sigma-Aldrich®) were used in

quartz cells provided by HellmaAnalytics with path length 20mm.
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Synthetic Experimental
4-Hydroxy-N,N’-bis(1-(naphthalen-1-yl)ethyl)pyridine-2,6-dicarboxamide (3)

A solution of chelidamic acid monohydrate (0.50 g, 2.49 mmol), HOBt hydrate (0.98 g, 7.25
mmol), EDCI (0.9 mL , 5.10 mmol) and TEA (0.7 mL, 5.02 mmol) in anhydrous THF (50 mL)
was stirred at 0 °C for 30 minutes then treated with (S)-1-(1-naphthyl)ethylamine (0.85 mL,
5.30 mmol) dropwise. After 30 minutes the reaction was allowed to warm to RT and stirred
for 48 hours. All insoluble residues were removed by filtration, the filtrate concentrated to
dryness then re-dissolved into CH2Cl. (150 mL). This solution was washed with 1M HCI (2 x
50 mL), sat. ag. NaHCO3 (2 x 50 mL) and brine (50 mL) and the organic phase dried over
MgSQzg, filtered and concentrated in vacuo. Elution on silica (RediSep® 12g, 0 — 5 % MeOH
in DCM) afforded 15S pure as an off-white solid (0.682 g, 1.39 mmol, 56%); m.p. 154.6 —
155.3°C ; HRMS (m/z) (ES™) Calculated for C31H2sN3O3 m/z = 490.2151 [M + H]*. Found m/z
=490.2125; H NMR (400 MHz, CDCl3) § : 8.15—8.08 (2H, m, naph-CH), 8.02 (2H, s) 7.90
(3H, dd, J = 6.6, 3.0 Hz, naph-CH), 7.84 (2H, dd, J = 5.9, 3.6 Hz, naph-CH), 7.55 — 7.48 (4H,
m, naph-CH), 7.46 — 7.39 (3H, m, naph-CH), 6.00 (2H, app. dd, J = 14.6, 7.1 Hz), 1.67 (6H, d,
J=6.8 Hz) *C NMR (100 MHz, CDCl3) & : 158.37, 137.84, 133.84, 130.71, 130.67, 128.87,
128.40, 126.60, 125.87, 125.29, 122.98, 122.78, 113.23, 45.74, 20.98, 15.23; IR vmax (cm™):
3281, 346, 2970, 2927, 2865, 1654, 1599, 1509, 1448, 1353, 1236, 1135, 996, 799, 774.

4-(2,6-Bis(1-(naphthalen-1-yl)ethylcarbamoyl)pyridin-4-yloxy)propane-1-sulphonate (2)

A solution of 3 (1 equiv.) in anhydrous THF (25 mL) was treated with Cs,COs3 (2.5 equiv.) 1,3-
propanesultone (0.98 equiv., as a volumetric solution in anhydrous THF) then heated at reflux.
The reaction mixture was cooled and concentrated in vacuo, then the residue treated with
acetone (50 mL) and sonicated for 30 minutes. Residues were isolated by filtration under
suction; washed with acetone (250 mL) and Et.O (100 mL) then dried under high vacuum and
purified on C-18 silica (RediSep®, 4 gram) eluting with 0—100% MeCN in H20, product
containing fractions were concentrated in vacuo to give caesium salts as white solids. Yield:
71 %; m.p. 220.9 — 222.3 (decomposed at 224 °C); HRMS (m/z) (ES") Calculated for
C34H32N306S m/z = 61.2020[M — Cs]". Found m/z = 610.2017; *H NMR (400 MHz, MeOD-
ds) &: 8.20 (2H, d, J = 8.3 Hz, naph-CH), 7.91 (2H, d, J = 7.8 Hz, naph-CH), 7.85 — 7.80 (4H,
m, naph-CH), 7.66 (2H, d, J = 7.0 Hz, naph-CH), 7.58 — 7.37 (6H, m, naph-CH), 6.09 (2H, q,
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J=6.5Hz), 4.36 (2H, t, J = 5.64 Hz), 3.01 (2H, t, J = 7.1 Hz), 2.32 (2H, m), 1.74 (6H, d, J =
6.7 Hz); 13C NMR (100 MHz, MeOD-ds) & : 165.87, 162.09, 149.48, 137.05, 132.40, 129.33,
126.94, 126.04, 124.32, 123.72, 123.43, 121.22, 120.85, 109.40, 50.26, 49.87, 43.89, 43.71,
18.27; IR vimax (cm™%): 3300, 2932, 2570, 1638, 1599, 1521, 1393, 1351, 1180, 1137, 1034, 993,
884, 831, 800, 776, 733, 694, 661.

Photophysical Calculations

Otherwise stated, all measurements were performed at 298 K in methanol or acetonitrile
solutions (spectroscopy grade, Aldrich). UV-visible absorption spectra were measured in 1-cm
quartz cuvettes on a Varian Cary 50 spectrophotometer. Baseline correction was applied for all
spectra. Emission (fluorescence, phosphorescence and excitation) spectra and lifetimes were
recorded on a Varian Cary Eclipse Fluorimeter. Quartz cells with a 1 cm path length from
Hellma were used for these measurements. The temperature was kept constant throughout the
measurements at 298 K by using a thermostated unit block. Phosphorescence lifetimes of the
Eu(°Do) excited state were measured in both water/deuterated water or methanol/deuterated
methanol solutions in time-resolved mode at 298 K. They are averages of three independent
measurements, which were made by monitoring the emission decay at 616 nm, which
corresponds to the maxima of the Eu(l1l) *Do—'F> transition, enforcing a 0.1 ms delay, and
were analyzed using Origin 7.5®. The number of water molecules directly bounded to Eu(l11)
center (q value) was determined according to the equation developed by Parker et al [1]:
q=A(toly —151p) 1),
where 1o+ is the life-time water or methanol solutions, to-p is the life-time measured in

deuterated water or deuterated methanol solutions.

Eu,L
rel

The quantum yields (Q..,;~) were measured by relative method [2,3] using

Css[Eu(dpa)s]-9H.0 complex in 0.1 M Tris buffer (pH = 7.45) (QZY = 24.0 + 2.5 %) [4] as
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a standard with known quantum yield, to which the absorbance and emission intensity of the
sample are compared according to:

Eu,L Qx Ey Ar(Ay) Ir(Ay) n
= == =X X X = 2),
Qrel Qr Er  Ax(Ay) Le(Ax) nf ( )

where subscript r — reference and x — sample; E — integrated luminescence intensity; A —
absorbance at the excitation wavelength; | — intensity of the excitation light at the same
wavelength, n — refractive index of the solution. The estimated error for quantum vyields is
+10%.

r lifetime was obtained using equation (3):

1 I
— =Aup,- n3 - ( wt) (3),

TR Iup
where n is the refractive index of the solvent, Awmp,o is the spontaneous emission probability for
the °*Do—>'F1 transition in vacuo, and lit/Imp is the ratio of the total area of the corrected Eu(l11)

emission spectrum to the area of the *Do—"F1 band (Amp, = 14.65 s).[5].

The quantum yield of the luminescence step (@) expresses how well the radiative process

complete with non-radiative processes.

Tobs
in= — (4),
TR

The efficiency of lanthanide sensitization (7, ) is the ratio between @, (determined

experimentally) and @, (see equation (4)):

@tot
nsens = n (5)

Ln

Circular dichroism (CD) spectra were recorded in methanol solution on a Jasco J-810-150S
spectropolarimeter. Circularly polarised luminescence (CPL) spectra were recorded by Dr. R.
Peacock at the University of Glasgow. Excitation of Eu(lll) (560-581nm) was accomplished
by using a Coherent 599 tunable dye laser (0.03 nm resolution) with argon ion laser as a pump

source. Calibration of the emission monochromator was accomplished by passing scattered
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light from a low power HeNe laser through the detection system. The optical detection system
consisted of a photoelastic modulator (PEM, Hinds Int.) operating at 50 kHz and a linear
polarizer, which together act as a circular analyzer, followed by a long pass filter, focusing lens
and a 0.22 m double monochromator. The emitted light was detected by a cooled EM1-9558QB
photomultiplier tube operating in photon counting mode. The 50 KHz reference signal from
the photoelastic modulator was used to direct the incoming pulses into two separated counters.
An up counter, which counts every photon pulse and thus is a measure of the total luminescence
signal | = leert + lrignt, and an up/down counter, which adds pulses when the analyzer is
transmitting to the left circularly polarized light and subtracts pulses when the analyzer is
transmitting right circularly polarized light. The second counter provides a measure of the

differential emission intensity A7 = lieft — lright.
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S8 Zoomed region of overlaid IR spectra of Eu.[2.(R,R)]s and 2.(R,R) showing key carbonyl
stretching shifts upon Eu(l1l) complexation
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S12 Overlaid absorbance profile of Eu-[2-(R,R)]s and the excitation spectrum of 615 nm emission in
phosphorescence mode.
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S13 UV-Visible Titration of 2.(R,R) (a) overlaid spectra of additions of Eu(ll) as Eu(OTf)s to 2(R,R)
at c =1 x 107 (b) Spectral changes at various wavelengths of interest (291, 281, 227 and 215 nm)
upon sequential additions of Eu(OTf)s.
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S14 Fitting results of UV-Visible Titration of 2.(R,R) with Eu(OTf); (a) Spectral changes at various
wavelengths (points, S15b) and their calculated fits from non-linear regression analysis in ReactLab
EQUILIBRIA® (b) Generated speciation diagram from regression analysis of UV-changes.
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S15 Fluorescence titration with low signal:noise ratio for 2.(R,R) with Eu(OTf)zatc=1x10° M in
water (a) overlaid spectra of additions of Eu(lI1) as Eu(OTf)s to 2(R,R) at ¢ = 1 x 10 (b) Spectral
changes at various wavelengths of interest (595 (J=1), 615 and 621 (J=2) nm) upon sequential
additions of Eu(OTf)s.
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S16 Fitting results of Fluorescence Titration of 2.(R,R) with Eu(OTf)s (a) Spectral changes at various
wavelengths (points, S15b) and their calculated fits from non-linear regression analysis in ReactLab
EQUILIBRIA® (b) Generated speciation diagram from regression analysis of UV-changes.
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S17 Time-gated luminescence (phosphoresence mode) titration with high signal:noise ratio for 2.(R,R)
with Eu(OTf)sat ¢ = 1 x 10° M in water (a) overlaid spectra of additions of Eu(Ill) as Eu(OTf)s to
2.(R,R) at c =1 x 107 (b) Spectral changes at various wavelengths of interest (595 (J=1), 615, 621
(J=2) nm and 695 (J=3)) upon sequential additions of Eu(OTf)s.
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S18 Fitting results of time-gated luminescence (phosphorescence mode) titration of 2.(R,R) with
Eu(OTf); (a) Spectral changes at various wavelengths (points, S15b) and their calculated fits from
non-linear regression analysis in ReactLab EQUILIBRIA® (b) Generated speciation diagram from
regression analysis of UV-changes.
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S20 Fitting results of Fluorescence Titration of 2.(R,R) with Eu(OTf)s (a) Spectral changes at various
wavelengths (points, S15b) and their calculated fits from non-linear regression analysis in ReactLab
EQUILIBRIA® (b) Generated speciation diagram from regression analysis of UV-changes
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enhanced CD spectra upon formation of the 3:1 complex (solid line) showing strong bisignate Cotton

effect at 200 — 240 nm.
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S22 Overlaid CD spectra (zoomed region) of of 2.(S,S) and 2.(R,R) in water at ¢ = 1 x10"°> M showing

weak CD in the naphthyl n—n* transitions.
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S23 Variable temperature CD spectra of Eu.[2.(S,S)]s as representative of both enantiomers. (a) Full
spectrum of Eu.[2.(S,S)]srecorded at various temperatures between -10 °C and 40°C in H,O atc =1
x 10 M (b) Zoomed region between of the Cotton effect bands of the CD spectra.
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S24 Varaible temperature CD spectra of 2.(S,S) as representative of both enantiomers. (a) Full
spectrum of 2.(S,S) recorded at various temperatures between -10 °C and 35 °C in water at 1 x 10° M
showing some wavelength shifts (b) Zoomed region between of the Cotton effect bands of the CD

spectra.
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S26 CD titration of 2.(R,R) with Eu(OTf)s in water at ¢ = 1 x 10° M (a) Full spectra from CD titration
overlaid (b) Spectral changes in key absorbance wavelengths (227, 219, 217 and 212.5 nm) upon

addition of Eu(llI).
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S27 CD spectra represented between key equivalents of Eu(ll) for 2.(R,R) upon additions of
Eu(OTf)s to 2.(R,R) at ¢ = 1 x 10° M in water showing sequential isoeliptic features within the
profiles (a) CD spectra recorded between 0—0.4 equivalents Eu(III) (b) CD spectra recorded between
0.5—1.0 equivalents Eu(III) (¢) CD spectra recorded between 1.5—5.0 (excess) equivalents Eu(l11)
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S28 Fitting results of circular dichroism titration of 2.(R,R) with Eu(OTf)s (a) Spectral changes at
various wavelengths (points, S26b) and their calculated fits from non-linear regression analysis in
ReactLab EQUILIBRIA® (b) Generated speciation diagram from regression analysis of CD-changes.
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S29 (a) Recalculated CD spectra for 2.(S,S) and the 1:1, 2:1 and 3:1 complexes with Eu(l11) (b)
Recalculated CD spectra from 2.(R,R) and the 1:1, 2:1 and 3:1 complexes with Eu(l11)
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S30 Representative experimental luminescence lifetime measurements for Eu.[2.(R,R)]s in (&) H2.0
(b) DO
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S31 Representative experimental luminescence lifetime measurements for Eu.[2.(S,S)]s in (a) H20 (b)
D0
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S32 Table of experimental luminescence lifetimes (1) recorded in H2O (th20) and D20 (tp20) from
which hydration states (q, number of bound water molecules) were calculated.

7 (H20), 1 (D20), Horrocks g- Parker modified g-value
Complex
ms ms value (£ 0.5) (£ 0.5)
Eu.[2.(S,S)]s 160+x0.01 39%0.1 0.14(3) 0
Eul2.(RR)]s 1.61+001 40x0.1 0.14(5) 0
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