Electronic Supplementary Information for

Three dimensional ink-jet printing of biomaterials using ionic liquids and co-solvents

Deshani H. A. T. Gunasekera^{*}, SzeLee Kuek^a, Denis Hasanaj^a, Yinfeng He^a, Christopher Tuck^a, Anna K. Croft^a and Ricky D. Wildman^a

> ^a Faculty of Engineering, University of Nottingham, NG7 2RD, United Kingdom. E-mail: enxhagun@nottingham.ac.uk

Sample Preparation - Sample Number 1

Volume of [C ₄ C ₁ Im][OAc]	= 8 mL
Density of [C ₄ C ₁ Im][OAc]	= 1.055 g/cm ³
Mass of $[C_4C_1Im][OAc]$	= 8.4400 g

Mass of cellulose was taken as 2% of the mass of $[C_4C_1Im][OAc]$, i.e. 0.1688 g

Sample Preparation - Sample Number 5

Volume of $[C_4C_1Im][OAc]$	= 6 mL
Density of $[C_4C_1Im][OAc]$	= 1.055 g/cm ³
Mass of $[C_4C_1Im][OAc]$	= 6.3300 g

Mass of cellulose was taken as 2% of the mass of $[C_4C_1Im][OAc]$, i.e. 0.1266 g

Mass of DMSO was taken as 50% of the mass of $[C_4C_1Im][OAc]$, i.e. 3.17 g

Figure S1. Apparatus used to fill the DIMATIX materials print cartridge. A) jetting module B) fluid module C) fill needle D) 1 mL syringe E) cleaning pad and F) syringe filter

Density Calculation - Sample Number 1

Mass Cellulose	= 0.1688 g
Mass of $[C_4C_1Im][OAc]$	= 8.4400 g
Total sample mass	= 8.6088 g
Density of Cellulose	=0.6 g/cm ³
Volume of Cellulose	=0.28133 cm ³
Density of $[C_4C_1Im][OAc]$	= 1.055 g/cm ³
Volume of $[C_4C_1Im][OAc]$	= 8 cm ³
Total sample volume	= 8.28122 cm ³
Sample density	= <u>1.04 g/cm³</u>

Density Calculation - Sample Number 5

= 0.1266 g = 6.33 g = 3.17 g
= 10.8876 g
=0.6 g/cm ³ =0.211 cm ³
= 1.055 g/cm ³ = 6 cm ³
= 1.1 g/cm ³ = 6 cm ³
= 9.0883cm ³
= <u>1.06 g/cm³</u>

Scanning Electron Microscope (SEM) Images

В

Figure S2. SEM images obtained from Philips XL30 scanning electron microscope A) sample 6 printed on PET and dried overnight at room temperature, B) sample 7 printed on PET and dried overnight at room temperature

Figure S3. WLI images and data obtained from Brunker Contour CT white light interferometry for sample 6 printed on PET and dried overnight at room temperature

Figure S4. WLI images and data obtained from Brunker Contour CT white light interferometry for sample 7 printed on PET and dried overnight at room temperature

Figure S5. WLI data obtained from Brunker Contour CT white light interferometry for sample 6 printed on PET and dried overnight at 50°C

Figure S6. WLI data obtained from Brunker Contour CT white light interferometry for sample 7 printed and dried overnight at 50°C