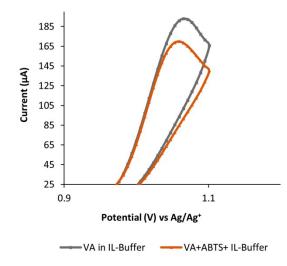
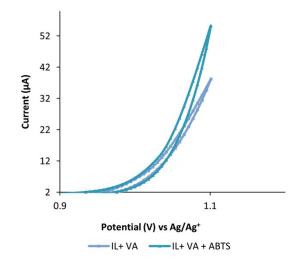

Developing Energy Efficient Lignin Biomass Processing – Towards Understanding Mediator Behaviour in Ionic Liquids

Majd Eshtaya,^a Andinet Ejigu,^b Gill Stephens,^a Darren A. Walsh,^b George Z. Chen^{a, c} and Anna K. Croft^a


- ^{a.} Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK
- ^{b.} Department of Chemistry, University of Nottingham, Nottingham NG7 2RD, UK
- ^{c.} Department of Chemical and Environmental Engineering, Faculty of Science & Engineering, University of NottinghamNingbo China, Ningbo 315100, P. R. China

Supplemental Information



Potential (V) vs Ag/Ag+

Figure A: Cyclic voltammogram of 10 mM ABTS 1 in $[C_2 mim][C_2 SO_4]$ with varying scan rates (from inside to outside (mV/s): 50, 100, 200, 400, 600, 800 and 1000).

Figure B: Cyclic voltammograms of 13.8mM veratryl alcohol **4**, 13.8 mM veratryl alcohol **4** mixed with 1 mM ABTS **1** in 15% (v/v) $[C_2mim][C_2SO_4]$ in 0.1 M sodium acetate buffer (pH 4.5) recorded at a scan rate of 10 mV/s with current above 25 μ A between 0.9 and 1.1 V.

Figure C: Cyclic voltammograms of 13.76 mM veratryl alcohol **4**, 13.76 mM veratryl alcohol **4** mixed with 1 mM ABTS **1** in $[C_2 \text{mim}][C_2 SO_4]$ recorded at a scan rate of 10 mV/s with current above 2.0 μ A between 0.9 and 1.1 V.