Electronic Supplementary Material (ESI) for Faraday Discussions. This journal is © The Royal Society of Chemistry 2015

Nucleation of Metastable Aragonite CaCO3 in Seawater

Wenhao Sun, S. Jayaraman, W. Chen, K.A. Persson, G Ceder

Faraday Discussions Slides March 31st, 2015

Sun, Wenhao, et al. "Nucleation of metastable aragonite CaCO3 in seawater." *Proceedings of the National Academy of Sciences* 112.11 (2015): 3199-3204.

Calcium Carbonate Formation in Marine Environments

Latitude

The largest global scale CO₂ sink

 $CO_2 \rightarrow HCO_3^- \rightarrow CO_3^{2-} \rightarrow CaCO_3$

Atmospheric CO₂ deposits into the ocean, forming the shells of corals, pteropods, and molluscs.

Healthy Shellfish

From Antarctica

Orr, Nature (2005) Beaufort, Nature Geosciences (2012)

Calcite

Aragonite

Equilibrium Phase

Precipitated phase in Seawater (Metastable by 2.5 meV/atom)

Metastable aragonite is 50% more soluble than calcite.

Biomineralized aragonite (Corals, Molluscs, Pteropods) more vulnerable to ocean acidification

What are the solution conditions that promote the kinetic preference for Aragonite?

Two Phases in Competitive Nucleation

The role of aqueous Mg²⁺ in inhibiting calcite nucleation

<u>Observations:</u> When solution Mg/Ca > 2, Aragonite is preferred over Calcite.

In seawater (**Mg/Ca = 5.2**), Calcite incorporates ~7% Mg²⁺ in solid solution

Aragonite precipitation not affected by Mg/Ca

 $\Delta G_c \propto \frac{r}{(\Lambda G)^2}$

Does Mg²⁺ affect: Mg-calcite surface energy? or Mg-calcite solubility?

BULK MINERAL-SOLUTION EXCHANGE THERMODYNAMICS

 $x \operatorname{Mg}^{2+}(aq) + \operatorname{CaCO}_{3}(s) \rightarrow \operatorname{Ca}_{1-x} \operatorname{Mg}_{x} \operatorname{CO}_{3}(s) + x \operatorname{Ca}^{2+}(aq)$

$$\Delta G_{Ca_{1-x}Mg_{x}CO_{3}} = \Delta H_{Ca_{1-x}Mg_{x}CO_{3}}^{mix} - T\Delta S_{Ca_{1-x}Mg_{x}CO_{3}}^{mix} + xRT \ln\left(\left(\frac{K_{sp}^{MgCO_{3}}}{K_{sp}}\right)\left(\frac{a_{Ca^{2+}}}{a_{Mg^{2+}}}\right)\right)$$

DFT calculated Mixing Entropy Chemical potential of ion solid-solution Of Ideal Solution Mg/Ca exchange with solution formation enthalpy

High enthalpy of Mg2+ incorporation into Aragonite can not be stabilized by any Mg/Ca ratio. (Empirically known, *theoretically confirmed*)

Mg-CALCITE SOLUBILITY

We predict a 30% increase of increase of Mg-calcite solubility from $10^{-8.48}$ to $10^{-8.36}$ at ~7% MgCO₃, in close agreement with experiment.

This corresponds to only 0.3 RT/mol reduction in bulk driving force. Typical nucleation driving forces are an order of magnitude higher.

Surface energy of calcite increases with MgCO₃ in solid-solution

 γ_{Calcite} from 0.2 J/m² \rightarrow 0.35 J/m² at seawater Mg/Ca ratios

Steady-State Nucleation Rates (J_{st}) of Aragonite and Mg-Calcite

*Choudens-Sanchez and Gonzales (2009)

*Choudens-Sanchez and Gonzales (2009)