Supplementary files for Inhibitory effects of selected dietary

flavonoids on the formation of total heterocyclic amines and 2-amino-

1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) in roast beef patties

and in chemical models

Qin Zhu,^a Shuang Zhang,^b Mingfu Wang,^c Jie Chen^{b,d,*}, and Zong-Ping Zheng^{b,*} ^aCollege of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, People's Republic of China ^bState Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China ^cSchool of Biological Sciences, The University of Hong Kong, Hong Kong, People's Republic of China ^dSynergetic Innovation Center of Food Safety and Nutrition, Jiangnan University,

Wuxi, Jiangsu, 214122, People's Republic of China

Validation of the method

 Table S1. Regression equation, correlative coefficient and limit of detection of seven

 HAs

Table S2. Recovery and RSD of seven HAs

Figure S1. MRM chromatogram of seven heterocyclic amines standards

Figure S2. Changes in the relative content of phenylacetaldehyde with time in model system

Figure S3. LC-MS/MS² spectrum of naringenin-phenylacetaldehyde adduct

Figure S4. LC-MS/MS² spectrum of kaemferol-phenylacetaldehyde adduct

Figure S5. LC-MS/MS² spectrum of apigenin-phenylacetaldehyde adduct

Figure S6. LC-MS/MS² spectrum of luteolin-phenylacetaldehyde adduct

Figure S7. LC-MS/MS² spectrum of quercetin-phenylacetaldehyde adduct

Validation of the method

Linear regression was performed using the concentrations and peak area ratios of the standards and IS. The linear ranges were determined according to the regression correlation coefficient for each concentration range. The limit of detection (LODs) and limit of quantification (LOQs) were determined by diluting the standard solutions or the blank sample spiked with the HAs standards at concentration levels similar to a specified signal to noise (S/N) ratio (3 and 10 for the LODs and LOQs, respectively).

Table S1. Regression equation, linear ranges, correlative coefficient, limit of detection, limits of quantitation of seven HAs

HAAs	Regression line	Linear	Correlation	Limits of	Limits of
		ranges	coefficient	detection	quantitation
		(ng/mL)	(R ²)	(ng/g)	(ng/mL)
Norharman	y = 11.103x + 22.375	0.49~249.50	0.9915	0.056	1.09
1,5,6-TMIP	y = 10.168x + 53.458	0.99~508.00	0.9986	0.052	0.70
Harman	y = 31.679x + 34.792	0.36~183.75	0.9967	0.038	2.32
PhIP	y = 4.3468x + 148.46	0.86~442.50	0.9836	0.162	0.57
MeIQx	y = 32.913x + 17.958	1.01~517.00	0.9997	0.221	0.68
DMIP	y = 9.9411x - 0.0417	0.83~424.50	0.9975	0.065	0.48
4,8-DiMeIQx	y = 21.909x + 292.83	0.51~131.50	0.9889	0.029	0.29

	Table S	2. Recovery	and RSD	of seven	HAs
--	---------	-------------	---------	----------	-----

	Spiked level						
HAs	1 ng/g		2 ng/g		4 ng/g		
	recovery (RSD (%)	recovery (RSD (%)	recovery (RSD (%)	
	%)		%)		%)		
Norharman	67.7	3.3	85.5	3.3	90.0	8.2	
1,5,6-TMIP	70.5	6.7	62.3	8.2	65.5	5.5	
Harman	80.5	12.6	66.7	5.4	82.2	5.2	
PhIP	67.2	3.6	59.9	5.8	54.8	7.2	
MeIQx	83.1	3.5	70.7	6.0	80.9	20.2	
DMIP	35.2	3.2	25.4	6.9	18.2	5.8	
4,8-DiMeIQx	74.3	4.8	60.2	5.2	53.5	6.5	

Figure S1. MRM chromatogram of seven heterocyclic amines standards

Figure S2. Changes in the relative content of phenylacetaldehyde with time in model system

Figure S3. LC-MS/MS² spectrum of naringenin-phenylacetaldehyde adduct

Figure S5. LC-MS/MS² spectrum of apigenin-phenylacetaldehyde adduct

Figure S7. LC-MS/MS² spectrum of quercetin-phenylacetaldehyde adduct