	Baseline	Reference	Test diet
Constant (diet base)			
Casein	200	200	200
Mineral mix	50	50	50
Vitamin mix	50	50	50
Fibre mix	50	50	50
Corn oil	50	50	50
Wheat starch	100	100	100
Variable			
Wheat bran	-	100	-
Sucrose	500	400	500-X
Test component	-	-	Х

Supplementary Table S1	Composition of diet base and trial diets (g dry wt/kg)
------------------------	--

Mineral mix (g/kg salt mix): CaHPO₄ 427; MgO 35; KCl 200; NaCl (iodised) 100; trace mineral mix 60; cellulose q.s (178).

Trace mineral mix (g/kg trace salt mix): C₆H₅O₇Fe.3H₂O 756.7; ZnO 20; CuCO₃.Cu(OH)₂.H₂O 6.7; MnSO₄.H₂O 80; Na₂SeO₃ 0.11; CoCl₂.6H₂O 0.039; CrK(SO₄)₂.12H₂O 6.3; KIO₃ 0.085; (NH)₄MO₇O₂₄.4H₂O 0.093; total 129.9. *Vitamin mix (g/kg mix)*: Retinyl acetate (500,000 IU/g) 0.1; tocopherol (Roche Rovimax E-25 250,000 IU/g) 4.0; menadione, 0.06; ergocalciferol, (20,000 IU/g) 1/100 in sucrose pre mix, 0.05; thiamine. HCl 0.1; riboflavin 0.14; pyridoxine HCl, 0.16; calcium pantothenate, 0.4; folic acid, 0.04; nicotinamide, 0.4; cyanocobalamin (1/100 in sucrose pre mix), 0.1; biotin, 0.02; myo-inositol, 4.0; choline chloride, 30.0; sucrose, 960.43; total 956.68.

Fibre mix: Wheat bran:sugar beet fibre (Fibrex 595) 1:1. Wheat bran is about 43% nonstarch polysaccharide and was Retsch milled through a 1-mm sieve plate, then hand sieved through a 2-mm sieve. The Fibrex was grade 595, < 125 μ m particle size, 73% dietary fibre (29% hemicellulose, 22% pectin, 18% cellulose, 4% lignin). Cellulose (185.7 g/kg) in the mineral mix adds a further 0.05 × 185.7 = 9.3 g cellulose/kg diet. Total dietary fibre = (25 × 0.43) + (25 × 0.73) + 9.3 = 38.3 g/kg diet. **Supplementary Table S2** Faecal parameters (values in **Tables 2-4** and **Fig. 4**) determined using the rat model and their relevance.

	Variable	Relevance
Parameters related to faecal dry matter		
1	Faecal dry matter per	The absolute amount of faecal matter produced per
	100 g feed intake (g)	equal quantity of food consumed. Useful for
		comparison.
2	Increase over baseline	Increment in faecal dry matter induced by a dietary
_	in faecal dry matter	component in a monogastric hind gut fermenting
	per 100 g feed intake	mixed dietary fibre.
	(g)	
3	Increase in dry weight	Increase in total non-fermented matter of endogenous
	per g added	and food origin, plus increased bacterial biomass,
	component	induced by a consumed material. Overall
		effectiveness at increasing faecal dry matter.
4	Apparent survival of	Increase in faecal dry weight as a percentage of the
	dietary fibres after gut	dry weight of test component consumed. An
	passage (%)	estimation showing maximum possible survival of

fibre.

Parameters related to faecal hydration

5	Faecal water-holding	The amount of water passively imbibed per gram of
	capacity (ml/g dry	dry faecal matter by intact dry faecal pellets and held
	faeces),	without stress because of the structure and hydration
		properties of the faecal components and the intact
		faecal mass.
6	Equivalent hydrated	Hydrated faecal bulk per 100 g food after passive
	faecal output	imbibition of water, when rat faecal pellets attain the
		same water content as human faeces (Monro, 2002)
7	Increase over baseline	Increment in hydrated faecal bulk induced by a
	in hydrated faecal	dietary component in a gastrointestinal tract adapted
	matter per 100 g feed	to hind gut fermentation of mixed polysaccharide
	intake (g)	
8	% increase over	The same as (Eastwood & Morris, 1992) expressed as
	baseline in hydrated	a percentage to facilitate comparisons.
	faecal matter per 100	
	g feed intake (g)	

- Faecal bulk per gram Increment over baseline in hydrated faecal bulk per of added component gram of added component, when the only difference (g)
 between baseline and test diets is the replacement of sucrose by the test component. Combines changes in dry weight and water holding capacity.
- 10Faecal moisture (%)McIntyre, Young, Taranto, Gibson, & Ward (1991)expressed in a way that makes comparisons easier.
- 11Theoretical faecalThe amount of water that would be held in thewater load (FWL) perhydrated faecal bulk generated by 100 g of a food. As100 g diet (ml/100 gdilution decreases chemical activity FWL shows howfeed intake)a food may be important in modulating processes in
the distal colon that depend on concentration.
- 12 Increase in water per g Gives a measure of the effectiveness of a diet added component component in increasing FWL.

Parameters related to faecal bulking as a food property

13	Faecal bulking index	Hydrated faecal bulk per g of test component as a
	(FBI; %)	percentage of the bulk induced by an equal weight of
		2-mm hard red wheat bran reference. Allows a
		standardised comparison of foods and food

components in terms of faecal bulking efficacy using a meaningful reference material (Monro, 2000).

14	Wheat bran	The weight of wheat bran that would have the same
	equivalents (WBE; g)	faecal bulking effect as a specified amount of food. Is
		a virtual food component allowing the quantitative
		contribution of different foods to faecal bulk to be
		counted and included in food composition databases
		and nutrient information panels on a reference
		amount customarily consumed (RACC) and per 100 g
		basis. Intended to facilitate and quantify product
		development and dietary management of faecal bulk
		in a mixed diet (Monro & Martinet, 2005).