## Supporting information for

## Ruthenium-containing $\beta$ -cyclodextrin polymer globules for the catalytic hydrogenation of biomass-derived furanic compounds

R. Herbois,<sup>*a,b*</sup> S. Noël, <sup>*a,b*</sup> B. Léger,<sup>*a,b*</sup> S. Tilloy,<sup>*a,b*</sup> S. Menuel, <sup>*a,b*</sup> A. Addad,<sup>*c*</sup> B. Martel,<sup>*c*</sup> A. Ponchel,<sup>*a,b*</sup> and E. Monflier<sup>\**a,b*</sup>

<sup>a</sup> Université d'Artois, Unité de Catalyse et de Chimie du Solide (UCCS), Faculté des Sciences Jean Perrin, Rue Jean Souvraz, SP 18, F-62307 Lens Cedex, France.
<sup>b</sup> CNRS, UMR 8181, F-59650 Villeneuve d'Ascq, France
<sup>c</sup> Université de Lille, UMET, UMR 8207, F-59650 Villeneuve d'Ascq, France

\* Corresponding author Fax: +33-3-2179-1755, e-mail: <u>eric.monflier@univ-artois.fr</u>

| Method for determining the $\beta$ -cyclodextrin content in Poly(CTR- $\beta$ -CD).                     | Page 3  |
|---------------------------------------------------------------------------------------------------------|---------|
| Fig. S1 Acid-base titration curve of poly(CTR-β-CD).                                                    | Page 4  |
| Fig. S2 <sup>1</sup> H NMR analysis in D <sub>2</sub> O of poly(CTR- $\beta$ -CD) after addition of the | Page 5  |
| different reactants used for the synthesis of Ru(0) NPs.                                                |         |
| Fig. S3 Representative TEM micrographs showing ruthenium-containing                                     | Page 6  |
| poly(CTR- $\beta$ -CD) spherical superstructures with the corresponding Ru(0)                           |         |
| nanoparticles surface density.                                                                          |         |
| Fig. S4 EDS spectrum of poly(CTR- $\beta$ -CD) Ru(0) NPs in a selected region area.                     | Page 7  |
| Fig. S5 TEM characterization of the poly(CTR-MaltoD) Ru(0) NPs at different                             | Page 8  |
| magnifications.                                                                                         |         |
| Fig. S6 TEM characterization of the CTR-stabilized Ru(0) NPs at different                               | Page 9  |
| magnifications.                                                                                         |         |
| Fig. S7 TEM characterization of the PM(CTR+ $\beta$ -CD) Ru(0) particles                                | Page 10 |
| synthesized from the mixture of citric acid and $\beta$ -CD (weight ratio of 1:1) as                    |         |
| stabilizing agent.                                                                                      |         |
| Fig. S8 Plots of the distribution of carboxylic acid groups and ratio of                                | Page 11 |
| carboxylate to ruthenium vs the pH of the aqueous suspension made of                                    |         |
| poly(CTR- $\beta$ -CD) Ru(0) NPs.                                                                       |         |
| Fig S9 Conversion of 2-furaldehyde as a function of time over different                                 | Page 12 |
| ruthenium catalytic systems.                                                                            |         |
| Fig. S10 Reaction profile for the hydrogenation of 2-furaldehyde over CTR-β-                            | Page 13 |
| CD Ru(0) NPs at 30°C and under 1 MPa H <sub>2</sub> .                                                   |         |
| Fig. S11 Reaction profile for the hydrogenation of 2-furaldehyde over                                   | Page 14 |
| PM(CTR+ $\beta$ -CD) Ru(0) NPs at 30°C and under 1 MPa H <sub>2</sub> .                                 |         |
| Fig. S12 TEM characterization of the poly(CTR- $\beta$ -CD) Ru(0) NPs recovered                         | Page 15 |
| at the end of the hydrogenation reaction of 2-furaldehyde (reaction time 4 h.).                         |         |
| Fig. S13 (a) <sup>1</sup> H NMR spectrum of poly(CTR- $\beta$ -CD) Ru(0) NPs dispersed in               | Page 16 |
| $D_2O$ (before catalysis) (b) <sup>1</sup> H NMR analysis of poly(CTR- $\beta$ -CD) Ru(0) NPs           |         |
| recovered at the end of the hydrogenation reaction of 2-furaldehyde (303 K, 10                          |         |
| bar H <sub>2</sub> , reaction time 4 h.), extraction of the organic product with CDCl <sub>3</sub>      |         |
| followed by its evaporation (35°C, water pump) and re-dissolution in $D_2O$                             |         |
| (after catalysis).                                                                                      |         |

Method for determining the  $\beta$ -cyclodextrin content in Poly(CTR- $\beta$ -CD)



The number of citric acid and aconitic acid molecules per cyclodextrin unit has to be calculated as follows :

✓ Ratio citric acid/CD :

 $(CH_2)$  citric acid integral x H<sub>1</sub> CD number

 $H(CH_2)$  citric acid number x  $H_1$  CD integral

Numerical application:  $(3.05 \times 7) / (4 \times 1) = 5.34$ 

✓ ratio aconitic acid/CD :

 $\frac{(CH=)aconitic acid integral x H_1 CD number}{(CH=)aconitic acid integral x H_1 CD number}$ 

(CH=)aconitic acid number x  $H_1$  CD integral

Numerical application:  $(0.13 \times 7) / (1 \times 1) = 0.91$ 

 $\checkmark$  Then the weight percent of a compound i can be determined from the general formula: ratio (specie i/CD) x M<sub>i</sub>

 $\Sigma$  (ratio<sub>i</sub> x M<sub>i</sub>)

Numerical application for  $\beta$ -CD: 1135/(5.34×192+0.91×174 + 1×1135) = **49 wt. %** 

where 1135, 192 and 174 are the molar masses (g mol<sup>-1</sup>) of  $\beta$ -CD, citric acid and aconitic acid respectively.



**Fig. S1** Acid-base titration curve of poly(CTR- $\beta$ -CD). *Experimental procedure:* 50 mg of poly(CTR- $\beta$ -CD) are dissolved in 100 mL of a 0.1 M NaCl solution. The resulting solution is titrated by a 0.05 M NaOH solution. The equivalent volume Veq is determined by the derivative curve dpH/dV. The pH value at Veq/2 gives a mean pKa value of 4.1 for the poly(CTR- $\beta$ -CD).



**Fig. S2** <sup>1</sup>H NMR analysis in D<sub>2</sub>O of poly(CTR- $\beta$ -CD) after addition of the different reactants used for the synthesis of Ru(0) NPs: (a) Pristine poly(CTR- $\beta$ -CD); (b) poly(CTR- $\beta$ -CD) with NaHCO<sub>3</sub>; (c) poly(CTR- $\beta$ -CD) with NaHCO<sub>3</sub> and Ru(NO)(NO<sub>3</sub>)<sub>3</sub>; (d) poly(CTR- $\beta$ -CD) with NaHCO<sub>3</sub>, Ru(NO)(NO<sub>3</sub>)<sub>3</sub> and NaBH<sub>4</sub> and (e) poly(CTR- $\beta$ -CD) with NaHCO<sub>3</sub> and NaBH<sub>4</sub> (no metal)







Fig. S4 EDS spectrum of poly(CTR- $\beta$ -CD) Ru(0) NPs in a selected region area.



**Fig. S5** TEM characterization of the poly(CTR-MaltoD) Ru(0) NPs at different magnifications: (a) 10w-magnification image; (b) medium-magnification image; (c) high-magnification image and (d) corresponding particle size distribution obtained from the measurement of ca. 200 particles.



**Fig. S6** TEM characterization of the CTR-stabilized Ru(0) NPs at different magnifications: (a) medium-magnification image; (b) high-magnification image and (c) corresponding particle size distribution obtained from the measurement of ca. 200 particles.





**Fig. S7** TEM characterization of the PM(CTR+ $\beta$ -CD) Ru(0) particles synthesized from the mixture of citric acid and  $\beta$ -CD (weight ratio of 1:1) as stabilizing agent.



**Fig. S8** Plots of the distribution of carboxylic acid groups and ratio of carboxylate to ruthenium vs the pH of the aqueous suspension made of poly(CTR- $\beta$ -CD) Ru(0) NPs.



**Fig S9** Conversion of 2-furaldehyde as a function of time over different ruthenium catalytic systems: polyCTR- $\beta$ -CD Ru(0) NPs (**•**) Ru/Al<sub>2</sub>O<sub>3</sub> (80 mg) (**•**) and Ru/C (80 mg) (**O**). Reaction conditions: Ru (40 µmol, 1 equiv.), 2-furaldehyde (2 mmol, 50 equiv), H<sub>2</sub> (1.0 MPa), solvent (H<sub>2</sub>O, 12 mL), stirring rate (1400 rpm), temperature (303 K), reaction time (3 h).



**Fig. S10** Reaction profile for the hydrogenation of 2-furaldehyde over CTR- $\beta$ -CD Ru(0) NPs at 30°C and under 1 MPa H<sub>2</sub>: 2-furaldehyde (**•**), furfuryl alcohol (**•**) and tetrahydrofurfuryl alcohol (**•**).



**Fig. S11** Reaction profile for the hydrogenation of 2-furaldehyde over  $PM(CTR+\beta-CD) Ru(0)$ NPs at 30°C and under 1 MPa H<sub>2</sub>: 2-furaldehyde (**■**), furfuryl alcohol (**●**) and tetrahydrofurfuryl alcohol (**▲**).



**Fig. S12** TEM characterization of the poly(CTR- $\beta$ -CD) Ru(0) NPs recovered at the end of the hydrogenation reaction of 2-furaldehyde ( reaction time 4 h.).



**Fig. S13** (a) <sup>1</sup>H NMR spectrum of poly(CTR- $\beta$ -CD) Ru(0) NPs dispersed in D<sub>2</sub>O (before catalysis) (b) <sup>1</sup>H NMR analysis of poly(CTR- $\beta$ -CD) Ru(0) NPs recovered at the end of the hydrogenation reaction of 2-furaldehyde (303 K, 10 bar H<sub>2</sub>, reaction time 4 h.), extraction of the organic product with CDCl<sub>3</sub> followed by its evaporation (35°C, water pump) and redissolution in D<sub>2</sub>O (after catalysis).