Direct conversion of carbohydrates to $\gamma\text{-valerolactone}$ facilitated by

solvent effect

Jinglei Cui,^{*ab*} Jingjing Tan,^{*ab*} Tiansheng Deng,^{*a*} Xiaojing Cui,^{*a*} Hongyan Zheng,^{*c*} Yulei Zhu*^{*ac*} and Yongwang Li^{*ac*}

- ^{*a*} State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, PR China.
- ^b University of Chinese Academy of Sciences, Beijing, 100049, PR China.

^{*c*} Synfuels China Co. Ltd., Beijing, PR China.

Table of Contents

- 1. Materials and Methods
- 2. Experiments
- 3. Catalyst characterizations
- 4. The direct conversion of fructose to GVL
- 5. The results of catalyst characterization
- 6. The comparison of reaction rate in water and water/GBL mixture
- 7. The carbon yield and relative carbon selectivity of various reactions
- 8. LA hydrogenation in different solvents
- 9. The recycle of HPA and Ru/TiO₂ catalyst
- 10. The conversion of sucrose in GBL/water

1. Materials and Methods

1.1 Materials

Cellulose, inulin, starch, sucrose, maltose, glucose, fructose and levulinic acid (LA, 98%) were purchased from Aladdin; γ -valerolactone, γ -butyrolactone, methanol, ethanol and 1, 4-dioxane were purchased from Sinopharm Chemical Reagent Co., Ltd.. All the above agents were utilized without further purification. RuCl₃·3H₂O, γ -Al₂O₃, SiO₂, ZrO₂, active carbon, TiO₂ (P25 Degussa) and H₃PW₁₂O₄₀ (HPA) were purchased from Sinopharm Chemical Reagent Co., Ltd..

1.2 Catalyst preparation

A series of Ru-supported catalysts were prepared by the wet impregnation method. The supports were treated as follows before the wet impregnation: γ -Al₂O₃, SiO₂, ZrO₂, TiO₂ and active carbon were dried at 100 °C overnight, followed by the impregnation with an aqueous solution containing RuCl₃·3H₂O at room temperature under vigorous stirring for 24 h. The resulting Ru supported catalysts were dried at 100 °C for 20 h. All the Ru catalysts except for Ru/C catalyst were calcined in air at 400 °C for 4 h. Pure RuO₂ was prepared by the following procedures: taking a certain concentration of RuCl₃·3H₂O solution, then 1.0 mol/L ammonia solution was slowly added by a syringe until the pH up to 8. The obtained black sediment was aged under 80 °C for 1 h, then the resulting RuO₂ was filtered, washed with water for three times and dried at 120 °C under vacuum overnight. Finally, the black solid was calcined in air at 400 °C for 4 h.

2 Experiments

2.1 The computational formula

The conversion of sugars and the yield of the products (GVL) were quantified according to the following equations:

 $Conversion = \frac{moles \ of \ sugar(inlet) - moles \ of \ sugar(outlet)}{moles \ of \ sugar(inlet)} \times 100\%$ $Yield = \frac{moles \ of \ GVL \ produced}{moles \ of \ theoretical \ product \ value} \times 100\%$

2.2 Procedures for the catalyst recycling

After the first run was completed, adding 5 g fructose into the reaction mixture. The reaction mixture changed into two phases, the top layer of GVL/GBL was collected. The solid Ru/TiO₂ catalyst, water, HPA, fructose and GBL were in the bottom layer. The water and GBL content in bottom layer was analyzed by GC. As the aqueous phase contains 5 g fructose, a certain amount of fresh HPA-Ru/TiO₂ catalysts, water and GBL were added to reach an identical reaction condition to the first run (fructose: HPA: Ru/TiO₂: water (20vol%)/GBL solvent=1 g : 0.4 g : 0.2 g : 10 ml) before each next run. Each recycling run was performed at 130 °C and 4 MPa H₂ pressure.

3 Catalyst characterizations

3.1 X-ray diffraction (XRD) measurements

Powder X-ray diffraction (XRD) patterns were obtained on a D2/max-RA X-ray diffractometer (Bruker, Germany), with Cu K α radiation at 30 kV and 10 mA. The X-ray patterns were recorded in 2 θ values ranging from 10° to 80° with a scanning speed of 4 °/min.

3.2 Transmission electron microscope (TEM)

TEM measurements were performed with a field-emission transmission electron microscopy (FETEM, JEM-2011F) operating at 200 kV voltages. The reduced samples were suspended in ethanol with an ultrasonic dispersion for 30 min and deposited on copper grids coated with amorphous carbon films.

3.3 N₂ adsorption-desorption isotherms of the Ru based catalysts

The catalysts were measured at -196 °C using a Mrcriomeritics ASAP2420 instrument after degassing at 300 °C to remove physically absorbed impurities for 8h in vacuum.

3.4 Inductively coupled plasma optical emission spectrometry (ICP-OES)

The content of phosphorus and tungsten in the GBL/GVL layer was analyzed by PerkinElmer Optima 2100 DV.

4. The direct conversion of fructose to GVL

Entry	Catalyst	LA yield/mol%	GVL yield/mol%
1	HPA-Ru/C	5.1	0.5
2	HPA-Ru/ZrO ₂	6.6	10.2
3	HPA-Ru/Al ₂ O ₃	7.5	3.5
4	HPA-Ru/SiO ₂	0.8	11.4
5	HPA-Ru/TiO ₂	4.8	16.3

Table S1 The direct conversion of fructose to GVL on

combined HPA and various supported Ru catalysts ^a

a: 0.2 g of 2 wt% Ru/support catalyst, 180 $^{\circ}$ C, H₂, 4 MPa ; 1 g D-fructose, 20 ml water, reaction for 10 h, 0.2 g of HPA; no fructose was detected after the reaction in all experiment runs.

Entry	T/°C	HPA/g	GVL yield%			
1	180	0.8	40.3			
2	180	1.0	36.5			
3	150	0.8	22.5			
4	150	1.2	35.5			
5	150	1.6	32.3			
6	130	0.4	trace			
7	130	0.8	22.6			
8	130	1.2	41.8			
9	130	1.6	39.6			
10	120	1.2	17.5			
11	120	1.6	29.1			
a: 0.2 g of 2 wt% Ru/TiO ₂ catalyst; H ₂ , 4 MPa, 1 g D-fructose, 20 ml water, reaction						
for 10 h; no fructose or LA was detected in each reaction run.						

Table S2 The effect of acid amount on GVL yield in aqueous reaction ^a

5. The results of catalyst characterization

Figure S1 The XRD patterns of supported Ru catalysts

Entry	Catalyst (2 wt%)	S_{BET} (m ² /g)	D _{pore} (nm)	V_{pore} (cm ³ /g)
1	Ru/Al_2O_3	159.57	16.42	0.65
2	Ru/SiO ₂	336.52	10.89	0.92
3	Ru/ZrO_2	2.68	69.03	0.05
4	Ru/TiO ₂	4.34	30.43	0.03
5	Ru/C	1206.1	1.91	0.57

Table S3 Surface area (S $_{\text{BET}}$), average pore diameters (D $_{\text{pore}}$) and average pore

volumes (V $_{\text{pore}}$) of Ru-support catalysts

Figure S2 The TEM images of 2 wt% Ru/TiO₂ catalyst

Figure S3 Size distribution of Ru nanoparticles

6. The comparison of reaction rate in water and water/GBL mixture

Figure S4 The conversion of fructose to GVL in water and water/GBL mixture. Reaction conditions: 1 g fructose, 130 $^{\circ}$ C, H₂, 4 MPa; HPA, 0.4 g; 20 ml solvent, 20 vol% water content for GBL/water mixture.

7. The carbon yield and relative carbon selectivity of various reactions

Entry	T/°C	Carbon yield	Relative carbon selectivity %						
		mol%	GVL+FA	LA	HMF	DMF	Furan		
1	180 ^b	22.3	76.2	17.9	-	3.7	2.2		
2	180	28.6	95.6	-	-	2.1	2.3		
3	180 ^c	41.8	96.4	-	-	2.5	1.1		
4	150 ^c	23.6	95.8	-	0.6	1.7	1.9		
5	130 ^c	23.1	96.8	-	0.9	2.3	-		
a: 0.2 g of 2 wt% Ru/TiO ₂ catalyst, 0.4 g $H_3PW_{12}O_{40}$; H_2 , 4 MPa, 1 g D-fructose, 20 ml water, reaction for 10 h; b: 0.2 g $H_3PW_{12}O_{40}$; c: 0.8 g $H_3PW_{12}O_{40}$.									

Table S4 The carbon yield and relative carbon selectivity in aqueous reaction ^a

Entry	Solvent	Carbon yield	Relative carbon selectivity %				
		mol%	GVL+FA	DMF	Furan		
1	Methanol/water	16.8	98.5	1.1	0.4		
2	Ethanol/water	23.6	98.2	0.9	0.9		
3	1,4-dioxane/ water	42.1	98.8	0.3	0.9		
4	GBL/Water	61.2	98.7	1.0	0.3		
5	GBL/Water ^b	68.8	98.9	0.9	0.2		
a: 0.2 g of 2 wt% Ru/TiO ₂ catalyst, 0.4 g $H_3PW_{12}O_{40}$; H_2 , 4 MPa, 1 g D-fructose, 20 ml 20 vol% water/organic solvent, 130 °C, reaction for 10 h; b: 10 ml 20 vol% water/GBL solvent.							

Table S5 The carbon yield and relative carbon selectivity in water/organic solvent ^a

8. LA hydrogenation in different solvents

Figure S5 LA hydrogenation in different solvents. Reaction conditions: 1 g LA, 10 ml solvent, 130 °C, H₂ 4 MPa, 0.2 g of 2 wt% Ru/TiO₂, reaction for 30 min.

9. The recycle of HPA and Ru/TiO_2 catalyst

(a)

(b)

Figure S6 The picture of reaction mixture separation: reaction mixture before separation (left sample), reaction mixture after adding 5g fructose (right sample).

	Weight of adding fructose /g											
	2		3		4			5				
Weight/	Layer	GBL	GVL	Layer	GBL	GVL	Layer	GBL	GVL	Layer	GBL	GVL
Composition	Weight	wt%	wt%	Weight	wt%	wt%	weight	wt%	wt%	Weight	wt%	wt%
	/g			/g			/g			/g		
Top layer	2.1	72.1	12.1	1.8	73.2	15.2	1.6	75.5	19.9	1.4	73.9	23.8
Bottom layer	9.8	60.4	1.1	11.1	54.9	0.7	12.3	51.1	0.4	13.5	47.9	0.1
a: The weight and composition of original reactant mixture: 10 g, 20.5 wt% of water, 75.1 wt% of GBL, 3.4 wt% of GVL.												

Table S6 The compositions of the separated layers ^a

Entry	Weight of adding	Content of P	Content of	W / P^{b}	$H_3PW_{12}O_{40}$ in GBL/GVL layer /total $H_3PW_{12}O_{40}$ % ^c
	indetesse/g	#B/ 5	" #B' B		
1	2	12.9	882.7	68.4	0.89
2	3	12.2	891.3	73.1	0.68
3	4	11.3	785.1	69.5	0.52
4	5	<1	17.8	-	trace

Table S7 The content of lost $H_3PW_{12}O_{40}$ in the GBL/GVL layer ^a

a: The content of P and W was analyzed by ICP-OES; b: The W/P value of $H_3PW_{12}O_{40}$ is 71.2; c: the value of $H_3PW_{12}O_{40}$ in GBL/GVL layer / total $H_3PW_{12}O_{40}$ was calculated according the content of W.

10. The conversion of sucrose in GBL/water

Figure S7 The conversion of sucrose in GBL/water. Reaction conditions:150 °C, 1 g sucrose, 0.4 g HPA, 10 ml 20 vol% water/GBL solvent.