Supporting Information

Purification of lipase using ionic liquids as adjuvants in aqueous two-phase

systems

Ranyere L. Souza ^a, Sónia P. M. Ventura ^b, Cleide M. F. Soares ^{a,c}, João A. P. Coutinho ^b, Álvaro

S. Lima*,a,b

^a Universidade Tiradentes, Av. Murilo Dantas 300, Farolândia, 49032-490, Aracaju-SE, Brazil.
^b Departamento de Química, CICECO, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
^c ITP, Instituto de Tecnologia e Pesquisa, Av. Murilo Dantas, 300-Prédio do ITP, Farolândia, 49032-490, Aracaju-SE, Brazil.

* To whom correspondence should be addressed:

Tel: +55 7932182115; Fax: +55 7932182190; E-mail address: alvaro_lima@unit.br

ATPS		Mass Fraction				
			$Rv \pm \sigma$			
		PEG	Salt	IL	CalB	
	no IL	15.02 ± 0.02	14.95 ± 0.04		5.15 ± 0.05	0.93 ± 0.03
	[C ₂ mim]Cl	14.96 ± 0.03	14.62 ± 0.64	5.03 ± 0.05	5.16 ± 0.05	1.79 ± 0.02
PEG 1500	[C ₄ mim]Cl	15.05 ± 0.04	14.90 ± 0.10	5.05 ± 0.04	5.06 ± 0.10	1.83 ± 0.06
	[C ₆ mim]Cl	15.09 ± 0.04	15.15 ± 0.22	5.00 ± 0.01	5.14 ± 0.17	1.87 ± 0.01
	[C ₈ mim]Cl	15.05 ± 0.06	15.02 ± 0.06	5.03 ± 0.01	5.11 ± 0.15	1.54 ± 0.06
PEG 4000	no IL	10.04 ± 0.04	13.01 ± 0.01		5.16 ± 0.08	0.65 ± 0.03
	[C ₂ mim]Cl	10.05 ± 0.06	13.04 ± 0.03	5.05 ± 0.06	5.11 ± 0.03	0.86 ± 0.02
	[C ₄ mim]Cl	10.04 ± 0.05	12.98 ± 0.04	5.10 ± 0.03	5.02 ± 0.02	0.85 ± 0.06
	[C ₆ mim]Cl	10.00 ± 0.03	12.99 ± 0.03	5.03 ± 0.04	5.19 ± 0.13	1.53 ± 0.04
	[C ₈ mim]Cl	10.01 ± 0.01	13.05 ± 0.07	5.04 ± 0.04	5.12 ± 0.03	0.82 ± 0.02
PEG 6000	no IL	10.03 ± 0.03	12.03 ± 0.03		5.07 ± 0.04	0.69 ± 0.01
	[C ₂ mim]Cl	10.00 ± 0.02	12.01 ± 0.01	5.05 ± 0.04	5.03 ± 0.02	0.73 ± 0.02
	[C ₄ mim]Cl	10.07 ± 0.09	12.06 ± 0.08	5.09 ± 0.05	5.06 ± 0.09	0.92 ± 0.01
	[C ₆ mim]Cl	10.04 ± 0.04	12.04 ± 0.03	5.08 ± 0.04	5.11 ± 0.12	1.16 ± 0.03
	[C ₈ mim]Cl	10.09 ± 0.05	12.06 ± 0.11	5.08 ± 0.09	5.08 ± 0.09	0.92 ± 0.02
PEG 8000	no IL	10.07 ± 0.08	12.02 ± 0.06		5.09 ± 0.09	0.63 ± 0.01
	[C ₂ mim]Cl	10.07 ± 0.08	12.03 ± 0.04	5.06 ± 0.05	5.05 ± 0.07	0.65 ± 002
	[C ₄ mim]Cl	10.05 ± 0.05	12.03 ± 0.01	5.12 ± 0.02	5.14 ± 0.09	0.85 ± 0.02
	[C ₆ mim]Cl	10.07 ± 0.06	12.05 ± 0.06	5.02 ± 0.01	5.03 ± 0.02	1.06 ± 0.03
	[C ₈ mim]Cl	10.08 ± 0.11	12.07 ± 0.04	5.09 ± 0.11	5.06 ± 0.08	0.79 ± 0.04

Table A.1: The volume ratio (Rv) with the respective standard deviations and mass fraction compositions of the ATPS for CaLB purification at 25 (± 0.1) °C and atmospheric pressure.

Table A.2:	The volume	ratio (Rv) with	the respective	standard	deviations	and ma	iss fraction
compositions	of the ATP	S for purificatio	n of lipase fron	n <i>Bacillus</i>	sp. ITP-00	1, at 25	(± 0.1) °C
and atmosphe	eric pressure.						

Route	ATPS						
			PEG	Salt	IL	Solution of <i>Bacillus</i>	
i PEG 150		no IL	15.02 ± 0.02	14.95 ± 0.04		70.03 ± 0.06	1.26 ± 0.01
		[C ₂ mim]Cl	14.96 ± 0.03	14.62 ± 0.64	5.03 ± 0.05	65.40 ± 0.56	1.10 ± 0.01
	PEG 1500	[C ₄ mim]Cl	15.05 ± 0.04	14.90 ± 0.10	5.05 ± 0.04	65.01 ± 0.10	1.26 ± 0.08
		[C ₆ mim]Cl	15.09 ± 0.04	15.15 ± 0.22	5.00 ± 0.01	64.76 ± 0.16	1.29 ± 0.04
		[C ₈ mim]Cl	15.05 ± 0.06	15.02 ± 0.06	5.03 ± 0.01	64.90 ± 0.01	1.00 ± 0.00
ii	PEG 1500	no IL	15.02 ± 0.03	15.07 ± 0.07		69.05	1.09 ± 0.03
		[C ₆ mim]Cl	15.10 ± 0.09	15.15 ± 0.16	5.16 ± 0.07	64.87	1.90 ± 0.05
i	PEG 6000	[C ₂ mim]Cl	15.04 ± 0.02	15.05 ± 0.02	5.17 ± 0.01	64.77 ± 0.18	0.83 ± 0.02
		[C ₆ mim]Cl	15.06 ± 0.02	15.02 ± 0.02	5.14 ± 0.04	64.98 ± 0.14	1.09 ± 0.02
i	PEG 8000	[C ₂ mim]Cl	15.08 ± 0.08	15.13 ± 0.20	5.01 ± 0.01	64.79 ± 0.28	0.86 ± 0.02
		[C ₆ mim]Cl	15.05 ± 0.07	15.08 ± 0.13	5.05 ± 0.04	64.90 ± 0.10	1.05 ± 0.06

Table A.3: The enzyme recovered in the bottom phase ($R_{\rm EB}$), the contaminating protein recovered in the top phase ($R_{\rm PT}$), partition coefficient for contaminant protein ($K_{\rm P}$), and the enzyme ($K_{\rm E}$), plus the purification factor (PF) with the respective standard deviations (σ). All ATPS were constituted with PEG + K₂HPO₄/KH₂PO₄ + IL (when present) + water + CaLB, at 25 (± 0.1) °C and atmospheric pressure.

ATPS		$R_{\rm EB} \pm \sigma$	$R_{\rm PT} \pm \sigma$	$K_{\rm E} \pm \sigma$	$K_{\rm P} \pm \sigma$	$\mathbf{PF} \pm \boldsymbol{\sigma}$
PEG 1500	no IL	67.13 ± 0.08	78.39 ± 3.00	0.52 ± 0.01	3.96 ± 0.85	3.25 ± 0.51
	[C ₂ mim]Cl	60.12 ± 1.27	81.66 ± 2.22	0.37 ± 0.02	2.49 ± 0.44	2.55 ± 0.35
	[C ₄ mim]Cl	56.53 ± 0.86	87.61 ± 0.005	0.42 ± 0.07	3.90 ± 0.14	3.45 ± 0.08
	[C ₆ mim]Cl	51.68 ± 0.003	92.49 ± 0.83	0.50 ± 0.05	6.79 ± 0.99	5.22 ± 0.65
	[C ₈ mim]Cl	67.33 ± 3.02	72.21 ± 7.97	0.38 ± 0.04	2.08 ± 0.31	2.24 ± 0.29
PEG 4000	no IL	72.62 ± 1.49	66.02 ± 0.79	0.58 ± 0.02	2.96 ± 0.08	2.51 ± 0.02
	[C ₂ mim]Cl	65.34 ± 2.58	68.56 ± 0.01	0.62 ± 0.07	2.54 ± 0.01	2.19 ± 0.09
	[C ₄ mim]Cl	65.91 ± 3.87	62.00 ± 0.57	0.61 ± 0.09	1.85 ± 0.02	1.78 ± 0.09
	[C ₆ mim]Cl	56.50 ± 1.92	70.17 ± 0.01	0.50 ± 0.04	1.53 ± 0.01	1.69 ± 0.04
	[C ₈ mim]Cl	69.83 ± 0.29	27.51 ± 0.49	0.53 ± 0.02	0.46 ± 0.01	0.96 ± 0.01
	no IL	72.24 ± 0.48	65.19 ± 0.60	0.55 ± 0.01	2.66 ± 0.07	2.38 ± 0.04
	[C ₂ mim]Cl	72.07 ± 0.65	55.35 ± 4.96	0.54 ± 0.02	1.71 ± 0.33	1.63 ± 0.03
PEG 6000	[C ₄ mim]Cl	63.89 ± 2.72	48.79 ± 0.15	0.57 ± 0.07	1.04 ± 0.01	1.26 ± 0.06
	[C ₆ mim]Cl	63.77 ± 1.87	47.60 ± 0.65	0.47 ± 0.02	0.78 ± 0.01	1.20 ± 0.02
	[C ₈ mim]Cl	72.01 ± 2.67	23.62 ± 0.09	0.39 ± 0.05	0.34 ± 0.01	0.94 ± 0.04
PEG 8000	no IL	77.13 ± 3.19	56.96 ± 0.60	0.48 ± 0.10	2.09 ± 0.01	2.10 ± 0.15
	[C ₂ mim]Cl	76.61 ± 0.48	69.84 ± 0.75	0.46 ± 0.01	3.54 ± 0.03	3.12 ± 0.01
	[C ₄ mim]Cl	69.95 ± 0.39	61.73 ± 0.58	0.51 ± 0.02	1.91 ± 0.02	1.93 ± 0.03
	[C ₆ mim]Cl	67.72 ± 0.59	25.38 ± 0.44	0.45 ± 0.01	0.32 ± 0.05	0.91 ± 0.02
	[C ₈ mim]Cl	77.23 ± 3.53	12.23 ± 0.62	0.38 ± 0.06	0.18 ± 0.01	0.85 ± 0.04

Figure A.1: ILs distribution between the two phases in terms of their partition coefficient (K_{IL}) and their respective standard deviations, for systems based in 15 wt% of PEG (1500 and 8000) + 5 wt% of [C_n mim]Cl + water + 15 wt% of K₂HPO₄/KH₂PO₄ (pH 7) ¹.

Reference

1. R. L. Souza, V. C. Campos, S. P. M. Ventura, C. M. F. Soares, J. A. P. Coutinho and Á. S. Lima, *Fluid Phase Equilib.*, 2014, 375, 30-36.