Supporting Information for

Recyclable hydrotalcite catalysts for alcohol imination via acceptorless dehydrogenation

John Bain, Philip Cho, and Adelina Voutchkova-Kostal

Department of Chemistry, The George Washington University, Washington, DC 20052

Corresponding Author:

Adelina Voutchkova-Kostal. Tel.: 202-994-6121, Fax: 202-994-5873,

Email: avoutchkova@email.gwu.edu

Table of Contents

SI-Experimental. Preparation of Mg: Al HT 3:1 and 15% M^x doped Mg:Al Hydrotalcite

Table S1. Reports of hydrotalcite-like materials and their structural properties

Figure S1. PXRD patterns of HT1-6

Figure S2. FT-IR spectra of HT1-6

Figure S3. STEM image of Pd/HT1 with EDX of the region indicated with red circle

Figure S4. PXRD patterns of HT4 after subsequent catalytic cycles

Figure S5. FT-IR spectra of HT4 after subsequent catalytic cycles

SI- ¹H NMR data. Imines from substrate scope tables (Table 3 and 4) were all known compounds

SI-References

SI-Experimental

Preparation of Mg: Al HT 3:1: Mg:Al HT 3:1 was prepared using three parts M²⁺ to two parts M³⁺ titrated together at a pH between 8-10. A standard procedure prepared two solutions. Solution 1 was that of deionozed H₂O, Mg(NO₃)₂*6H₂O (0.15 mol), and Al(NO₃)₃*9H₂O (0.05 mol). Solution 2 was that of deionozed H₂O, NaOH (0.4 mol), and NaCO₃(0.025 mol). Solution 1 was then titrated into solution 2 over a three to four hour period while stirring between 800 and 1200 rpm and then heated at 338K for 16-20 hours. The precipitate was then filtered and washed with room temperature deionized water until the pH of the filtrate was between 7 and 7.2. Once filtered the hydrotalcite was dried in an oven at 110°C for 24 hours. The dry hydrotalcite was then resuspended in deionized water, filtered, and dried again in the oven. For the samples that were calcined, they were placed in a furnace at 450°C for 24 hours and cooled in a desiccator before put into sample jars and stored.

Preparation of 15% M^x doped Mg:Al Hydrotalcite: M^x (M= Cu, Fe, Zn, Ni, Cr; x=2⁺, 3⁺) doped Mg:Al HT was prepared using three parts M²⁺ to two parts M³⁺ titrated together at pH>11. A standard procedure prepared three solutions. Solution 1 was that of deionozed H₂O, Mg(NO₃)₂*6H₂O, Al(NO₃)₃*9H₂O, and M^x(NO₃)_x*YH₂O. Solution 2 was that of deionozed H₂O and Na₂CO₃ (0.025 mol). Solution 3 was 1M NaOH. Solution 1 was then titrated into solution 2 over a three to four hour period with aliquots of Solution 3 added regularly. The system was left stirring between 800 and 1200 rpm through the titration and then heated at 338K for 16-20 hours. The precipitate was then filtered and washed with room temperature deionized water until the pH of the filtrate was between 7 and 7.2. Once filtered the hydrotalcite was dried in an oven at 110°C for 24 hours. The dry hydrotalcite was then resuspended in deionized water, filtered, and dried again in the oven. For the samples that were calcined, they were placed in a furnace at 450°C for 24 hours and cooled in a desiccator before put into sample jars and stored.

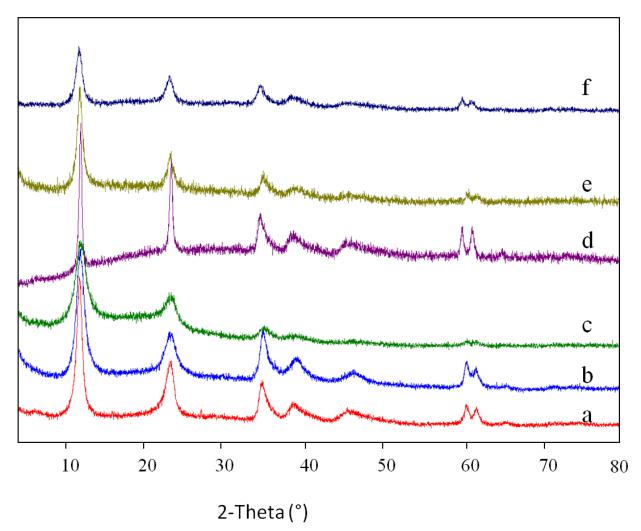
Table S1. Reports of hydrotalcite-like materials and their structural properties

Reference	Formula	BET (m^2/g)	Crystallite Å
Millange J. Mater.	$[Mg_3Al(OH)_8][(CO_3)_{0.5}]\cdot 2H_2O$	N/A	337
Chem. 2000, 1713-			
1720			
V.K. Diez et. al J.	Mg_5AlO_x	184	N/A
Catalysis, 2003, 220-	Mg_3AlO_x	238	N/A
233	Mg_1AlO_x	231	N/A
Meloni, D. et. al. J.	MgNiAl(0.22)*	154	a = 3.012; $c = 22.162$
Therm. Anal. Calorim.	MgNiAl(0.47)*	359	a=3.039; c=22.046
2012, 783-791	MgNiAl(4.05)*	282	a=3.051; c=22.918
Zhao, Y. et. al. Chem.	Mg_2Al^a	N/A	296
Mater. 2002, 4286-	Mg_3Al^a	N/A	116
4291	Mg_4Al^a	N/A	96
Sharma, S.K.; et. al.	Mg _{3.5} Al	75-85 ^b	180-290 ^c
Ind. Eng. Chem. Res.			

2007, 4856-4865			
Miyata, S. Clays and	MgAl ^{a,d}	24	112-909 e
Clay Miner. 1980, 50-			
56			
Takehira, K. Catal.	Mg_3 - Al^a	91.3	N/A
Surv. Asia. 2007, 1-30	Ni ₂ -Al ^a	99.9	N/A
	$Mg_{2.5}(Ni_{0.5})$ -Al	121.2	N/A
Wu, J.S; et. al. Turk. J.	Cu-Mg-Al_HTlc	1) N/A	1)382.5
Chem. 2011 , 881-891	1) 0% ethylene glycol	2) N/A	2)364.5
	2) 5%	3)136.92	3)321.4
	3) 10%	4) N/A	4)338.7
	4) 15%	5) N/A	5)339.6
	5) 20%		
Tong, M.; Chen, H.;	Zn-Al-Hts	43.48	N/A
Yang, Z.; Wen, R. Int.			
J. Mol. Sci. 2011, 1756-			
1766	21 21		

^{* = ()} indicate ratio of Mg^{2+}/Ni^{2+}

^a belong to general formula of $[M^{(II)}_{1-x}M^{(III)}_{)x}(OH)_2]^{x+}(A^{n-}_{x/n})_mH_2O(typically [Mg_1-x]_{x+1})^{x+1}$


 $_{x}Al_{x}(OH)_{2}]^{x+}(CO_{3})_{x/2}\cdot yH_{2}O$ made via constant pH method)

^bdepending on aging time (75-7hr: 85-3hr)

[°]depending on hydrothermal treatment temp (aging temp), where 70°C = 180 and 140°C = 290

^d ratio = A1/(Mg+A1) = 0.250

e depending on hydrothermal treatment temp/time (112 = 0 hr at 40°C and 909 = 48 hr at 150°C)

Figure S1: PXRD patterns of (a) HT*1*, (b) HT2, (c) HT3, (d) HT4, (e) HT5, (f) HT6

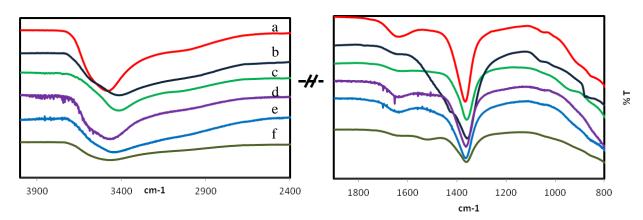
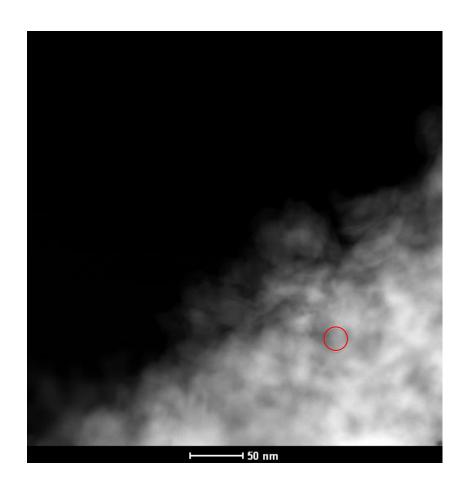



Figure S2: FT-IR spectra of (a) HT1, (b) HT6, (c) HT3, (d) HT4, (e) HT2, (f) HT5

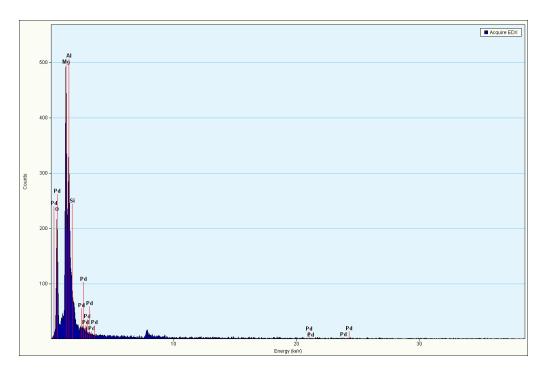
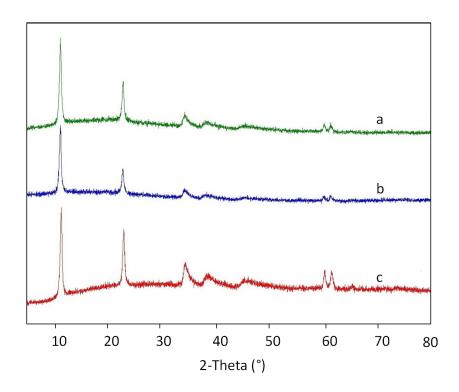
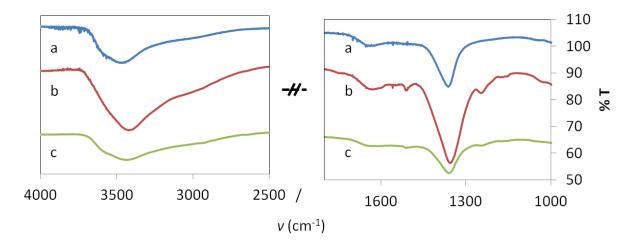




Figure S3. STEM image of Pd/HT1 with EDX of the region indicated with red circle.

Figure S4. PXRD patterns of (a) HT4, (b) HT4 washed and dried after 1 cycle of the coupling reaction between benzyl alcohol and p-anisidine and (c) HT4 washed and dried after cycle 2

Figure S5: FT-IR spectra of (a) HT4, (b) HT4 washed and dried after 1 cycle of the coupling reaction between benzyl alcohol and p-anisidine and (c) HT4 washed and dried after cycle 2

4-methoxy-*N***-(phenylmethylene)benzenamine.** 1 H NMR (CDCl₃, 400 MHz): δ 8.48 (s, 1H), 7.89 (m, 2H), 7.46 (m, 3H), 7.25 (d, 2H), 6.95 (d, 2H), 3.83(s, 3H). 1 H NMR is consistent with spectra reported by Lan, Y.-S.. 1

4-methoxy-N-[(4-methoxyphenyl)methylene]-benzenamine. 1 H NMR (CDCl₃, 400 MHz): δ 8.40 (s, 1H), 7.82 (d, 2H), 7.19 (d, 2H), 6.96 (m, 4H), 3.86 (s, 3H), 3.82 (s, 3H). 1 H NMR is consistent with spectra reported by Bennett, J.S. 2

4-methoxy-N-[(3-methoxyphenyl)methylene]-benzenamine. 1 H NMR (CDCl₃, 400 MHz): δ 8.44 (s, 1H), 7.51 (s, 1H), 7.39 (m, 2H), 7.22 (d, 2H), 7.03 (d. 1H), 6.94 (2, 2H), 3.88 (s, 3H), 3.82 (s, 3H). 1 H NMR is consistent with spectra reported by Cainelli, G. 3

4-methoxy-*N***-[(4-methylphenyl)methylene]- Benzenamine**. 1 H NMR (CDCl₃, 400 MHz): δ 8.43 (s, 1H), 7.77 (d, 2H), 7.23 (m, 4H), 6.93 (d, 2H), 3.82 (s, 3H), 3.67 (s, 3H 1 H NMR is consistent with spectra reported by Gopalakrishnan, M. 4

$$N$$
—OMe

4-methoxy-*N***-[(3-nitrophenyl)methylene]- Benzenamine**. 1 H NMR (CDCl₃, 400 MHz): δ 8.63 (s, 1H), 8.47 (s, 1H), 8.19 (d, 1H), 8.12 (d, 1H), 7.54 (t, 1H), 7.20 (d, 2H), 6.89 (d, 2H), 3.76 (s, 3H). 1 H NMR is consistent with spectra reported by Cao, C. 5

4-methoxy-*N***-(2-phenylethylidene)- Benzenamine.** 1 H NMR (CDCl₃, 400 MHz): δ 8.32 (t, 1H), 7.59 (m, 2H), 7.47 (m, 3H), 6.97 (d, 2H), 6.85 (d, 2H), 3.81 (s, 3H), 3.52 (d, 2H). 1 H NMR is consistent with spectra reported by Tomioka, K. 6

[[(4-methoxyphenyl)imino]methyl]-Phenol. 1 H NMR (CDCl₃, 400 MHz): δ 8.34 (s, 1H), 7.71 (d, 2H), 7.28 (d, 2H), 6.91 (d, 2H), 6.42 (d, 2H), 3.78 (s, 3H). 1 H NMR is consistent with spectra reported by Chen, L-X. 7

4-nitro-*N***-(phenylmethylene)-Benzenamine**. NMR (CDCl₃, 400 MHz): δ 8.38 (s, 1H), 8.26 (d, 2H), 8.03 (d, 2H), 7.9 (dd, 2H), 7.51 (m, 3H). ¹H NMR is consistent with spectra reported by Naeimi, H.⁸

N-(**phenylmethylene**)- **Benzenemethanamine.** NMR (CDCl₃, 400 MHz): δ 8.27 (s, 1H), 7.65 (m, 2H), 7.5-7.1 (m, 8H), 3.76 (s, 2H). ¹H NMR is consistent with spectra reported by Esteruelas, M.A.

N-(phenylmethylene)-Cyclohexanamine. NMR (CDCl₃, 400 MHz): δ 8.13 (s, 1H), 7.71 (m, 2H), 6.98 (m, 3H), 3.11 (m, 1H), 1.82-1.63 (m, 10H) ¹H NMR is consistent with spectra reported by Esteruelas, M.A. ⁹

N-(phenylmethylene)-1-Heptanamine. NMR (CDCl₃, 400 MHz): δ 8.32 (s, 1H), 7.79 (m, 2H), 7.46 (m, 3H), 3.67 (m, 2H), 1.77 (m, 2H), 1.37 (m, 8H), 0.96 (m, 3.29). ¹H NMR is consistent with spectra reported by Liu, L. H. ¹⁰

SI-References:

- 1. Lan, Y.-S.; Liao, B.-S.; Liu, Y.-H.; Peng, S.-M.; Liu, S.-T., **2013**, 2013 (-23), -5164.
- 2. Bennett, J. S.; Charles, K. L.; Miner, M. R.; Heuberger, C. F.; Spina, E. J.; Bartels, M. F.; Foreman, T., *Green Chemistry* **2009**, *11* (2), 166-168.
- 3. Cainelli, G.; Panunzio, M.; Giacomini, D.; Disimone, B.; Camerini, R., *Synthesis* **1994**, (8), 805-808.
- 4. Gopalakrishnan, M.; Sureshkumar, P.; Kanagarajan, V.; Thanusu, J., *Research on Chemical Intermediates* **2007**, *33* (6), 541-548.
- 5. Cao, C. Z.; Lu, B. T.; Chen, G. F., *Journal of Physical Organic Chemistry* **2011**, *24* (4), 335-341.
- 6. Tomioka, K.; Satoh, M.; Taniyama, D.; Kanai, M.; Iida, A., *Heterocycles* **1998**, *47* (1), 77-80.
- 7. Cheng, L. X.; Tang, J. J.; Luo, H.; Jin, X. L.; Dai, F.; Yang, J.; Qian, Y. P.; Li, X. Z.; Zhou, B., *Bioorganic & Medicinal Chemistry Letters* **2010**, *20* (8), 2417-2420.
- 8. Naeimi, H.; Salimi, F.; Rabiei, K., *Journal of Molecular Catalysis a-Chemical* **2006**, 260 (1-2), 100-104.
- 9. Esteruelas, M. A.; Honczek, N.; Olivan, M.; Onate, E.; Valencia, M., *Organometallics* **2011**, *30* (9), 2468-2471.
- 10. Liu, L. H.; Zhang, S. Y.; Fu, X. F.; Yan, C. H., *Chemical Communications* **2011**, *47* (36), 10148-10150.