Supplementary information

Appendix 1: Survey of available Green Chemistry metrics

	$Index_{ADP} = ADP \cdot mass \ of \ product$
Abiotic Depletion Potential ¹	ADP values from reference tables
Acidification Potential ^{1,2}	$AP =$ where a: number of dissociable H ⁺ in the formed acid $Index_{AP} = AP \cdot mass\ of\ product$
Atmospheric Acidification Potential ³	$AP = \frac{Total \ mass \ of \ SO2 \ equivalents}{Mass \ of \ Product}$
Atom Economy ^{4,5,6}	$\frac{\textit{MW of product}(s)}{\textit{MW of all reagents}} \cdot 100\%$
Actual Atom Economy ³	$AAE = AE \times \varepsilon$
Atom Utilisation ⁷	mass of product total mass of all substances produced
Bioaccumulation ¹	logP or logK _{ow}
Octanol-water partition Coefficient (K _{ow})	$K_{ow} = \frac{concentration \ in \ octanol \ phase}{concentration \ in \ water}$
Bioconcentration factor	$BCF = \frac{concentration\ in\ tissue\ of\ aquatic\ org.}{concentration\ in\ water}$
Carbon Efficiency ^{3,4}	mass of carbon in product total mass of carbon in key reagents
E-factor ^{5,8,9,10}	$\frac{m_A}{m_p} + \frac{m_B}{m_p} + \frac{m_{aux}}{m_p} + \frac{m_s}{m_p} - 1$ where A,B: reactants, p: product, aux: auxiliaries, s: solvents
E-factor based on mass	$E_m = \frac{1}{RME} - 1$
E-factor based on Molecular Weight	$E_{MW} = \frac{[(MW) \times (Stoichiometric\ coefficient)]_{waste}}{[(MW) \times (Stoichiometric\ coefficient)]_{product}}$
Effective Mass Yield ^{7,11}	mass of product mass of non – benign reagent
Elemental Efficiency ⁷	mass of element in product total mass of element in stoichiometric reagents
Emissions of specific compound released ¹²	$E_i = rac{mass\ of\ compound\ i\ released\ as\ CO_2}{basis\ of\ mass\ balance\ calculations} \ [g\ CO_2\ /\ kg\ of\ intermediate\ crystallised]$
Energy Efficiency ⁶	From a complete life cycle theoretical energy demand actual energy spent For individual process energy spent on step overall energy spent
Energy Intensity ⁴	$EI = \frac{total\ process\ energy}{mass\ product}$

	$EQ = E \cdot Q$
Environmental Quotient ³	Where E: E-factor, Q: Environmentally hazardous quotient
Eutrophication Potential ²	$EP = \frac{Total\ Mass\ of\ phosphate\ equivalents}{Total\ Mass\ of\ phosphate\ equivalents}$
	Mass of Product
	$Index_{EP} = EP \cdot m_{ass of product}$
Global Warming ¹	kg CO2 eq
	kg of product
	$GWP = \frac{Total\ mass\ of\ CO2\ equivalents}{Mass\ of\ Product}$
	Muss of Fronuct
Global Warming Potential ^{1,3,13}	$\begin{bmatrix} NC \\ \end{bmatrix}$ of a compound
	$GWP = \frac{\left[\frac{NC}{MW}\right] of \ a \ compound}{\left[\frac{NC_{CO2}}{MW_{CO2}}\right]}$
	NC_{CO2}
	$\frac{1}{MW_{CO2}}$
	where NC: number of carbon
Green House Gases emissions ⁶	$\sum (GHG_i \cdot P_i)$
Green House Guses emissions	Where P _i : Global warming potential factor
	$\begin{bmatrix} c_W \end{bmatrix}$
	$INGTP = rac{\lfloor \overline{LD_{50}} floor}{C_{W,tot}} \ [rac{LD_{50,tot}}{LD_{50,tot}}]$
Human Toxicity by Ingestion	$INGIP = \frac{1}{C_{W,tot}}$
Potential ¹	$\left[\frac{LD_{50,tot}}{LD_{50,tot}}\right]$
	where C_w : concentration in water
	$I_{INGTP} = INGTP \cdot m$
	$\begin{bmatrix} c_a \end{bmatrix}$
	$INHTP = \frac{\left[\frac{C_a}{LD_{50}}\right]}{\left[\frac{C_{a,tot}}{LD_{50,tot}}\right]}$
Human Toxicity by Inhalation	$C_{a,tot}$
Potential ⁴	$\lfloor \frac{1}{LD_{50,tot}} \rfloor$
	where C _a : airborne concentration of the emitted chemical
	$I_{INHTP} = INHTP \cdot m$
Mass Intensity ^{4,8,12,13}	total mass input excluding water
-	mass of product
Material Inputs Per Unit Service	weighted material input over life cycle
(MIPS) ⁶	units of service obtainable
Material Recovery Parameter ³	$MRP = rac{Total\ mass\ of\ reaction\ and\ postreaction\ solvents + mass\ o}{Total\ mass\ of\ reaction\ and\ postreaction\ solvents + mass\ o}$
Ozone depleting gas emissions ^{1,6}	$\sum (ODG_i \cdot P_i)$
	Where P _i : Potency factor
Persistence – Aerobic Biodegradation Rate ¹	$I = 3.199 + a_1 f_1 + a_2 f_2 + \dots + a_m MW$
	total[mass persistent + bioaccumulative]
Persistence and	mass of product total[mass persistent + bioaccumulative]
Bioaccumulative ⁴	EC _{50a material}
	$\overline{EC_{50~DDT~control}}$
Photochemical oxidation (smog) potential ³	
	$PCOP = \frac{Total\ mass\ of\ ethylene\ eq.}{Total\ mass\ of\ ethylene}$
	Mass of product

	PMI = 131 + 26C + 40H - 515A + 57(C - 1.5)(H - 8)
PMI Complexity Model ¹⁴	Where C: total number of chiral centres, H: total number of heteroatoms, A: fraction aromatic
	aromatic heavy atoms + heteroaromatic heavy atoms
	$A = \frac{1}{\text{heavy atoms}}$
	kg fuel
Primary Energy Usage	$\frac{1}{\log p}$
Process Mass Intensity (Overall) ¹⁵	total mass in a process or process step
16	mass of product
	total solvent input excluding water
Process Solvent Mass Intensity ⁴	mass of product
Process Water Mass Intensity	fresh water – recycled water
1 rocess water wass intensity	mass of product
	amount of water used
Process Water Use	
	unit of product
Raw Material Use	mass raw material
	mass product
Reaction Mass Efficiency	mass of products
(RME) (Tot.) ^{4,8,6,11,9}	mass of all reactants
RME: Excess reagent used,	$(\varepsilon)(AE)\left(\frac{1}{SF}\right)\left(\frac{1}{1+\left(\frac{\varepsilon(AE)[c+s+\omega]}{(SF)(m_{rr})}\right)}\right)$
reaction catalyst and solvent	1 + $\left(\frac{\varepsilon(AE)[c+s+\omega]}{}\right)$
disposed, workup and	$(SF)(m_n)$
purification materials disposed	Where ε: yield, AE: atom economy, SF: stoichiometric factor, c: catalyst, s: solvent, ω: waste, m _p : mass of product
RME: No excess reagent used,	1
reaction catalyst and solvent	$(\varepsilon)(AE)(\frac{-}{(\varepsilon(AE)[c+s+\omega])})$
disposed, workup and	$1 + \left(\frac{(c_1 z)(c_1 + c_2 + c_3)}{(c_2 c_3)}\right)$
purification materials disposed	(m_p)
RME: No excess reagent used,	$(\varepsilon)(AE)(\frac{1}{1 + \left(\frac{\varepsilon(AE)[c + s + \omega]}{(m_p)}\right)}$ $(\varepsilon)(AE)(\frac{1}{1 + \left(\frac{\varepsilon(AE)[c + \omega]}{(m_p)}\right)}$
reaction catalyst disposed,	$\int_{1}^{\infty} \left\langle \varepsilon(AE)[c+\omega] \right\rangle$
solvent recovered, workup and purification materials disposed	$1+\left(\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$
RME: No excess reagent used,	1
reaction catalyst disposed,	$(\varepsilon)(AE)(\frac{1}{(a(AE)(a))})$
solvent recovered, workup and	$(\varepsilon)(AE)(\frac{\varepsilon(AE)[c]}{(m)})$
purification materials recovered	(m_p)
RME: Excess reagent used,	1
reaction catalyst recovered,	$(\varepsilon)(AE)(\frac{1}{SE})$
solvent recovered, workup and	`SF'
purification materials recovered	
RME: No excess reagent used, reaction catalyst recovered,	
solvent recovered, workup and	$(\varepsilon)(AE)$
purification materials recovered	
Reaction Yield ³	Mass of product
	$\varepsilon = \frac{\varepsilon}{Theoretical mass of product}$
Recyclability	number of different materials
	unit of product
Renewability ⁶	rate of consumption of renewable energy
	overall rate of energy consumption

Renewability Index ³	$RI = \frac{Total\ energy\ supplied\ from\ renewable\ resources}{Total\ energy\ supplied\ from\ renewable\ resources}$
	Total energy supplied to the process
Renewable Intensity ¹³	mass of all renewably derived materials used
	mass of product
Risk Index	$I = P \cdot m$
	where P: risk potential, m: mass of chemical risk
	$SFP = \frac{MIR}{MIR_{ROG}}$
	$\frac{SFF}{MIR_{ROG}}$
Smog Formation ¹	where MIR: maximum Incremental Reactivity
	ROG: Reactive organic gases
	$I_{SFP} = SFP \cdot m$
Colorest management Engage 3	total solvent recover energy requirements
Solvent recovery Energy ³	mass of final product
G 1 12.12	mass of solvent
Solvent Intensity ^{12,13}	mass of product
	\sum mass
	$SF = 1 + \frac{\sum_{i=1}^{n} excess reagent}{\sum_{i=1}^{n} excess reagent}$
Stoichiometric Factor ^{3,9,11}	$SF = 1 + \frac{\sum_{mass_{excess reagent}}}{\sum_{mass_{stoichiometric reagent}}}$
	$(AE)\sum mass_{excess\ reagent}$
	$SF = 1 + \frac{(NL)^2 Intus s_{excess reagent}}{(NL)^2 Intus s_{excess reagent}}$
	$SF = 1 + \frac{\text{Constrained excess reagent}}{\text{theoretical mass of product}}$
VOCs emissions	solvent recycled
VOCS enfissions	total solvent use
Wests Intersity 12 13	total waste produced
Waste Intensity ^{12,13}	total mass input
W	waste treatment energy requirements
Waste treatment energy ³	kg of final product
Water Consumption	Volume of water consumed in the process ore process unit

_

¹ S.M. Mercer, J. Andraos, P.G. Jessop, **2012**. J. Chem. Educ., 89, 215-220

² A.D. Curzons, C. Jimenez-Gonzalez, A.L. Duncan, J.C. Constable, V.L. Cunningham, **2007**. Int. J. LCA, 12, 4, 272-280

³ G.J. Ruiz-Mercado, R.L. Smith, M.A. Gonzalez, **2012**. Ind. Eng. Chem. Res., 51, 2309-2328

⁴ A.D. Curzons, D.J.C. Constable, D.N. Mortimer, V.L. Cunningham, 2001. Green Chemistry, 3, 1-6

⁵ R.A. Sheldon, **2007**. Green Chem., 9, 1273-1283

⁶ A. Lapkin, L. Joyce, B. Crittenden, **2004**. Environ. Sci. Technol., 38, 5815-5823

⁷ M.G.T.C. Ribeiro, A.A.S.C. Machado, **2012**. Green Chemistry Letters and Reviews, 1-18

⁸ J. Auge, **2008**. Green Chemistry, 10, 225-231

⁹ J. Andraos, **2005**. Org. Proc. Res. & Dev., 9, 149-163, J. Andraos, **2005**. Org. Proc. Res. & Dev., 9, 404-431

¹⁰ M.G.T.C. Ribeiro, A.A.S.C. Machado, **2012**. Green Chemistry Letters and Reviews, 1-18

¹¹ D.J.C. Constable, A.D. Curzons, V.L. Cunningham, **2004**. Green Chemistry, 4, 521-527

¹² C. Jimenez-Gonzalez, D.J.C. Constable, A.D. Curzons, V.L. Cunningham, **2002**. Clean Techn. Environ. Policy. 4, 44-53

¹³ C. Jimenez-Gonzalez, D.J.C. Constable, C. S. Ponder, 2012. Chem. Soc. Rev., 41, 1485-1498

¹⁴ D.P. Kjell, I.A. Watson, C.N. Wolfe, J.T. Spitler, 2013. Org. Process res. Dev., 17, 2, 169-174

¹⁵ C. Jimenez-Gonzalez, C.S. Ponder, Q.B. Broxterman, J.B. Manley, 2011. Org. Proc. Res. Dev., 15, 912-917

¹⁶ C. Jimenez-Gonzalez, C. Ollech, W. Pyrz, D. Hughes, Q.B. Broxterman, N. Bhathela, 2013. Org.

Process Res. Dev., 17, 239-246