Supplementary Information of the Manuscript entitled

Eutectic Mixtures as Bifunctional Catalysts in the Low-Temperature-Synthesis of Polycaprolactone

by Sara García-Argüelles et al.

Figure S1: ¹H NMR spectra of the components that form the DESs (e.g. TBD and MeSO₃H) and of the TBD:MeSO₃H mixtures with 0.1:1.5 and 0.5:1.5 molar ratios.

Figure S2: DSC scan of the eutectic TBD:MeSO₃H mixture with a molar ratio of 0.05:1.5.

Figure S3: GPC separation of the PCLs obtained in this work with initiator (a) and without initiator (b).

Table S1: ¹H NMR chemical shifts (δ , in ppm) of different PCLs obtained with initiator.

	e-caprolactone		Initiator						
Set 1	-CO-O-CH ₂	-CO-O-CH ₂ -	H-O-CH ₂ -	Ph-CH ₂ -O-CO-CH ₂ -	-0-C0-CH ₂ -	-CH2-CH2-CH2-O-	-O-CO-CH ₂ -CH ₂ -	Ph-CH ₂ -	Ph-CH ₂ -
		(f)	(q)	(b)	(h)	(d,e)	(I)	0-CO-	0-CO-
PCL1I1_0.1:1.5	4.25	4.09	3.68	2.39	2.34	1.68	1.42	7.38	5.15
PCL1I2_0.1:1.5	4.26	4.10	3.69	2.40	2.34	1.69	1.42	7.39	5.15
PCL2I1_0.1:1.5	4.24	4.09	3.68	2.39	2.34	1.69	1.42	7.38	5.15
PCL2I2_0.1:1.5	4.26	4.10	3.69	2.40	2.34	1.69	1.42	7.39	5.15

Table S2: ¹H NMR chemical shifts (δ , in ppm) of different PCLs obtained without initiator.

	e-caprolactone	Polycaprolactone							
Set 2	-CO-O-CH ₂	-CO-O-CH ₂ -	H-O-CH ₂ -	H-O-CO-CH ₂ -	-O-CO-CH ₂ -	-CH ₂ -CH ₂ -CH ₂ -O-	-O-CO-CH ₂ -CH ₂ -		
		(f)	(q)	(b) <u> </u>	(h)	(d,e)	(1)		
PCL1I0_0.1:1.5	4.26	4.10	3.69	2.40	2.36	1.69	1.42		
PCL1I0_0.5:1.5	4.24	4.10	3.69	2.40	2.34	1.69	1.42		
PCL1I0_0:1.5	4.26	4.10	3.69	2.40	2.34	1.69	1.42		

Figure S4: Details of the ¹H NMR spectra of different PCLs obtained with initiator depicted in Figure S2 for better visualization of peaks ascribed to terminal methylene groups; (a) at ca. 3.7 ppm for those bonded to hydroxyl groups and (b) at ca. 2.4 ppm for those bonded to carboxylic groups.

Figure S5: Details of the ¹H NMR spectra of different PCLs obtained with initiator depicted in Figure S2 for chemical shifts ranging from (a) 3.20 to 4.40 ppm and (b) from 2.0 to 2.75 ppm.

PCL1I0_0.1:1.5

1.90

1.8

PCL1I0_0:1.5

Figure S7: XRD of PCLs synthesized as described in Table 1.

