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Table S1 Some physical properties of [A336][NO3] and DEHEHP (298 K)

extractant density (g/cm3) viscosity (mPa·s) average molecular 
weight

[A336][NO3] 0.9126 199.9 432

DEHEHP 0.9022 10.52 418

Table S2 Viscosity of IL phase under the different Pr-loaded concentrations at the 
different temperatures

Viscosity (mPa·s）
IL phase [Pr]IL (M)

298 K 303 K 308 K 318K
0 105.6394

[A336][NO3] 0.30 gel (> 2000)
0 48.9121 38.9032 31.3979 21.3152

0.33 150.7841[A336][NO3]-DEHEHP
(VA:VD = 2:3)

0.57 565.4734
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Fig. S1. The fitting plots of Ce/ qe vs Ce at different temperature for the extraction of 

Pr(III) according to Langmuir model.



Fig. S2. Effect of temperature on the adsorption equilibrium constants for Pr(III) by 

ionic liquid phase 0.2ml [A336][NO3] and 0.3ml DEHEHP. CLiNO3 = 3 M, pHe = ~3.5, 

CPr = 0.48 - 48 mmol/l, Vaq = 10ml.
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Fig. S3. The fitting plots of t/qt vs t for the extraction of Pr(III) according to pseudo-



second-order rate equation.

Fig. S4. Digit-photos for (AD) Pr-loaded [A336][NO3]-DEHEHP (0.33 M [Pr]IL) and 

(A) Pr-loaded [A336][NO3] (0.30 M [Pr]IL). 
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Fig. S5. The relationship between pseudo-second-order rate constant k2 and 1/T.
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Fig. S6. IR spectra. (A) DEHEHP and Pr(III)-loaded DEHEHP. (B) [A336][NO3] and 

Pr(III)-loaded [A336][NO3]. 

As seen in Fig. S6A, the characteristic band at 1249 cm−1 (υP=O) in DEHEHP has 

shifted to 1180 cm−1 in the Pr(III)-loaded DEHEHP. Thus, the strong interaction 

between the P=O group and Pr(III) shifts the stretching vibration peak of the P=O 

group to a lower wavenumber. While as both the characteristic bands at ~1000 cm-

1(υP-O-C) and ~870 cm-1 (υP-C) for DEHEHP underwent no obvious change, this 

indicates that the P-O-C and P-C groups are not involved in the coordination reaction. 

In addition, new peaks at 1490cm-1 and 1288cm-1 in the spectra of Pr-loaded 



DEHEHP can be attributed to υas,O-NO2 and υs,O-NO2, respectively. This suggests that 

the nitrate groups are involved into the neutral extracted species. Moreover, in the 

spectra of Pr-loaded DEHEHP, a minimal H2O peak is observed, thus, indicating that 

pure DEHEHP does not extract H2O. Therefore, contrary to traditional molecular 

solvent extraction, pure DEHEHP extracts Pr(III) without following a microemulsion 

extraction mechanism due to the absence of H2O molecules. While as in the IR 

spectra of [A336][NO3] and Pr-loaded [A336][NO3] (Fig. S6B), 1640 cm-1 is 

attributed to δH2O. 1464 cm-1 is from δas,CH3 and δas,CH2. ~ 1380 cm-1 probably comes 

from νas,NO3 and νs,CH3. 1332 and 1040 cm-1 belong to νC-N. 830 cm-1 is from δNO3. 

Finally, 722 cm-1 can be attributed to δ(CH2)n (n>4). The two new peaks identified at 

818 and 734 cm-1 were probably produced by bending and deformations of Pr-NO3 

bonds. 


