Supporting information

An ionic liquid-based synergistic extraction strategy for rare earths

Menghao Zhu^{a,b}, Junmei Zhao^{a,c*}, Yingbo Li^a, Nada Mehio^c, Yuruo Qi^{a,b}, Huizhou Liu^{a*}, Sheng Dai^c

^a Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China. Tel: +86-10-82544911. E-mail: jmzhao@ipe.ac.cn

^b University of Chinese Academy of Science, Beijing 100049, PR China

^c Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

extractant	density (g/cm ³)	viscosity (mPa·s)	average molecular weight			
[A336][NO ₃]	0.9126	199.9	432			
DEHEHP	0.9022	10.52	418			

Table S1 Some physical properties of [A336][NO₃] and DEHEHP (298 K)

Table S2 Viscosity of IL phase under the different Pr-loaded concentrations at the different temperatures

II phase	$[\Pr]_{IL}(M)$	Viscosity (mPa·s)			
IL pliase		298 K	303 K	308 K	318K
[A336][NO ₃]	0		105.6394		
	0.30		gel (> 2000)		
[A336][NO ₃]-DEHEHP ($V_A:V_D = 2:3$)	0	48.9121	38.9032	31.3979	21.3152
	0.33		150.7841		
	0.57		565.4734		

Fig. S1. The fitting plots of C_e/q_e vs C_e at different temperature for the extraction of Pr(III) according to Langmuir model.

Fig. S2. Effect of temperature on the adsorption equilibrium constants for Pr(III) by ionic liquid phase 0.2ml [A336][NO₃] and 0.3ml DEHEHP. $C_{LiNO3} = 3 \text{ M}$, $pH_e = \sim 3.5$, $C_{Pr} = 0.48 - 48 \text{ mmol/l}$, $V_{aq} = 10\text{ml}$.

Fig. S3. The fitting plots of t/q_t vs t for the extraction of Pr(III) according to pseudo-

second-order rate equation.

Fig. S4. Digit-photos for (AD) Pr-loaded [A336][NO₃]-DEHEHP (0.33 M [Pr]_{IL}) and (A) Pr-loaded [A336][NO₃] (0.30 M [Pr]_{IL}).

Fig. S5. The relationship between pseudo-second-order rate constant k_2 and 1/T.

Fig. S6. IR spectra. (A) DEHEHP and Pr(III)-loaded DEHEHP. (B) [A336][NO₃] and Pr(III)-loaded [A336][NO₃].

As seen in Fig. S6A, the characteristic band at 1249 cm⁻¹ ($v_{P=O}$) in DEHEHP has shifted to 1180 cm⁻¹ in the Pr(III)-loaded DEHEHP. Thus, the strong interaction between the P=O group and Pr(III) shifts the stretching vibration peak of the P=O group to a lower wavenumber. While as both the characteristic bands at ~1000 cm⁻¹ (v_{P-O-C}) and ~870 cm⁻¹ (v_{P-C}) for DEHEHP underwent no obvious change, this indicates that the P-O-C and P-C groups are not involved in the coordination reaction. In addition, new peaks at 1490cm⁻¹ and 1288cm⁻¹ in the spectra of Pr-loaded DEHEHP can be attributed to $v_{as,O-NO2}$ and $v_{s,O-NO2}$, respectively. This suggests that the nitrate groups are involved into the neutral extracted species. Moreover, in the spectra of Pr-loaded DEHEHP, a minimal H₂O peak is observed, thus, indicating that pure DEHEHP does not extract H₂O. Therefore, contrary to traditional molecular solvent extraction, pure DEHEHP extracts Pr(III) without following a microemulsion extraction mechanism due to the absence of H₂O molecules. While as in the IR spectra of [A336][NO₃] and Pr-loaded [A336][NO₃] (Fig. S6B), 1640 cm⁻¹ is attributed to δ_{H2O} . 1464 cm⁻¹ is from $\delta_{as,CH3}$ and $\delta_{as,CH2}$. ~ 1380 cm⁻¹ probably comes from $v_{as,NO3}$ and $v_{s,CH3}$. 1332 and 1040 cm⁻¹ belong to v_{C-N} . 830 cm⁻¹ is from δ_{NO3} . Finally, 722 cm⁻¹ can be attributed to $\delta_{(CH2)n}$ (n>4). The two new peaks identified at 818 and 734 cm⁻¹ were probably produced by bending and deformations of Pr-NO₃ bonds.