# Supporting Information

β-Cyclodextrin-butane sulfonic acid: an efficient and reusable catalyst for the multicomponent synthesis of 1-amidoalkyl-2-naphthols under solvent-free conditions Kai Gong<sup>\*, a</sup>, Hualan Wang<sup>b</sup>, Xiaoxue Ren<sup>a</sup>, Ying Wang<sup>a</sup> and Jinghua Chen<sup>a</sup>
<sup>a</sup> School of Pharmaceutical Science, Jiangnan University, Wuxi, 214122, China
<sup>b</sup>Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China

## **Table of Contents**

| Experimental general                                                                  | S1    |
|---------------------------------------------------------------------------------------|-------|
| Spectral data of $\beta$ -CD-BSA and selected compounds                               | S2-S3 |
| Copies of FT-IR, <sup>1</sup> H and <sup>13</sup> C NMR spectra of selected Compounds | S4-S9 |

\*Corresponding author. Tel.: +86-510-85197769; fax: +86-510-85197769; E-mail: kingong222@163.com.

#### Experimental

#### 1 General

Melting points were determined on an X6-data microscopic melting points apparatus and were uncorrected. IR spectra were recorded on a BRUKER VECTER 22 (KBr). <sup>1</sup>H NMR spectra were obtained from solution  $D_2O$  or DMSO- $d_6$  with TMS as internal standard using a BRUKER AVANCE III (400 MHz) spectrometer.

### 2 Synthesis of $\beta$ -CD-BSA

First,  $\beta$ -CD (2 g) was dissolved in NaOH solution (5M, 20 ml) in a 50 ml round bottom flask at 75 °C. To the solution, 1,4-butane sultone (2.4 g) was added dropwise. Then the mixture was stirred for 3 h. The reaction solution was cooled to room temperature, which was adjusted to neutral using HCl solution (3 M). The mixture was dropped in ethanol to afford sulfobutyl ether  $\beta$ -cyclodextrin (SBE- $\beta$ -CD).

Second, the acidic resin was activated in a saturated aqueous solution of NaCl for 1 day, followed by the treatment of 2.5 wt % NaOH aqueous solution for 80 min, and then washed with distilled water until pH 7.0, and finally it was treated with 5.0 wt % HCl aqueous solution for 12 h. Afterward, the resin was transferred to a column and washed with deionized water until the eluent reached pH 7.0.

Lastly, the sodium salt of SBE- $\beta$ -CD (1.0 g) was dissolved in water (100 mL), and the solution was allowed to flow through the acidic resin column at a speed of 20 drops per minute. The acidic eluent was collected and then freeze-dried for 12 h to obtain  $\beta$ -CD-BSA product.

#### **3** Typical procedure for the synthesis of 1-amidoalkyl-2-naphthols

The mixture of the aromatic aldehyde 1 (2 mmol), 2-naphthol (2 mmol), amide (2 mmol), and  $\beta$ -CD-BSA (0.02 mmol) was stirred at 100 °C for the appropriate time (monitored by TLC). Then, acetone (15 mL) was added and the reaction mixture filtered. The solid catalyst was washed with acetone (2×10 mL) and dried under vacuum. Pure 1-amidoalkyl-2-naphthols were afforded by evaporation of the solvent followed by recrystallization from ethanol. All were characterized by spectral data and comparison of their physical data with the literature.

### Spectral data of $\beta$ -CD-BSA and selected compounds

## Spectral data of $\beta$ -CD-BSA

FT-IR (KBr, cm<sup>-1</sup>): 3410, 2929, 1643, 1455, 1416, 1377, 1158, 1043, 879, 604, 531. <sup>1</sup>H NMR (400 MHz, D<sub>2</sub>O): δ 1.70 (s, -OCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>SO<sub>3</sub>H), 2.88 (s, -OCH<sub>2</sub> CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>SO<sub>3</sub>H), 3.49~3.8 (m, -OCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>SO<sub>3</sub>H and CH), 5.01~5.14 (m, C<sub>1</sub>-H). <sup>13</sup>C NMR (400 MHz, D<sub>2</sub>O): 20.50, 20.89, 27.47, 27.99, 50.62, 60.32, 68.72, 70.58, 71.52, 72.08, 79.83.

## Spectral data of selected compounds

*N-[(2-Hydroxynaphthalen-1-yl)-phenylmethyl]acetamide* (Table 2, entry 1):



White solid; mp 227-229 °C; FT-IR (KBr, cm<sup>-1</sup>): 3400, 3248, 3062, 1640, 1583, 1513, 1437, 1372, 1337, 1304, 1277, 1252, 1235, 1208, 1168, 1103, 1061, 1029, 987, 933, 877, 838, 807, 742, 697, 659, 625, 569; <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>): δ 1.97 (s, 3H, CH<sub>3</sub>), 7.11-7.16 (m, 4H, ArH), 7.20-7.27 (m, 4H, ArH), 7.35 (t, *J*=7.4 *Hz*, 1H, ArH), 7.75-7.81 (m, 3H, ArH and CH), 8.44 (d, *J*=8.4 *Hz*, 1H, NH), 9.98 (s, 1H, ArOH); <sup>13</sup>C NMR (100 MHz, DMSO-*d*<sub>6</sub>): δ 23.13, 48.26, 118.93, 119.31, 122.85, 126.50, 126.76, 128.45, 128.92, 129.00, 129.70, 132.79, 143.09, 153.61, 169.69.

*N-((4-Chlorophenyl)(2-hydroxynaphthalen-1-yl)methyl)acrylamide* (Table 2, entry 14):



White solid; mp 212-213 °C; FT-IR (KBr, cm<sup>-1</sup>): 3410, 3160, 1656, 1624, 1582, 1514, 1489, 1438, 1403, 1333, 1316, 1300, 1272, 1221, 1183, 1170, 1144, 1090, 1068, 1014, 978, 931, 877, 846, 817, 749, 721, 677, 627, 543; <sup>1</sup>H NMR (400 MHz, DMSO*d*<sub>6</sub>): δ 5.61-5.64 (dd, 1H, CH<sub>2</sub>), 6.12-6.17 (dd, 1H, CH<sub>2</sub>), 6.57-6.63 (dd, 1H, CH), 7.14-7.41 (m, 8H, ArH and CH), 7.78-7.83 (m, 3H, ArH), 8.74 (d, *J*=8.8 *Hz*, 1H, NH), 10.08 (s, 1H, ArOH); <sup>13</sup>C NMR (100 MHz, DMSO-*d*<sub>6</sub>): δ 48.06, 118.52, 118.90, 112.96, 123.56, 126.32, 126.98, 128.40, 128.47, 128.91, 129.10, 130.07, 131.19, 132.07, 132.69, 141.86, 153.77, 165.06.

*N-((2-Hydroxynaphthalen-1-yl)(p-tolyl)methyl)benzamide* (Table 2, entry 31):



Light yellow solid; mp 206-207 °C; FT-IR (KBr, cm<sup>-1</sup>): 3410, 3153, 3062, 1632, 1575, 1538, 1515, 1487, 1436, 1413, 1344, 1278, 1212, 1281, 1145, 1074, 1054, 1025, 940, 876, 815, 751, 703, 688, 586, 509; <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>): δ 2.24 (s, 3H, CH<sub>3</sub>), 7.08 (d, *J*=7.1 *Hz*, 2H, ArH), 7.18 (d, *J*=7.1 *Hz*, 2H, ArH), 7.24-7.31 (m, 3H, ArH and CH), 7.44-7.57 (m, 4H, ArH), 7.79-7.87 (m, 4H, ArH), 8.08 (d, *J*=8.0 *Hz*, 1H, NH), 9.01 (d, *J*=8.0 *Hz*, 2H, ArH), 10.33 (s, 1H, ArOH); <sup>13</sup>C NMR (100 MHz, DMSO-*d*<sub>6</sub>): δ 21.04, 49.54, 118.92, 119.17, 123.14, 126.90, 127.19, 127.58, 128.85, 128.99, 129.08, 129.22, 129.76, 131.88, 132.77, 134.86, 136.09, 139.47, 153.60, 166.12.

Copies of FT-IR, <sup>1</sup>H and <sup>13</sup>C NMR spectra of selected Compounds



Fig. S2 <sup>1</sup>H NMR spectra of  $\beta$ -CD and  $\beta$ -CD-BSA in D<sub>2</sub>O



Fig. S3 FT-IR spectrum of compound 4-1







Fig. S5 <sup>13</sup>C NMR spectrum of compound 4a







-2.50





Fig. S8 <sup>13</sup>C NMR spectrum of compound **4n** 



Fig. S10 <sup>1</sup>H NMR spectrum of compound 4E



Fig. S11 <sup>13</sup>C NMR spectrum of compound **4E**