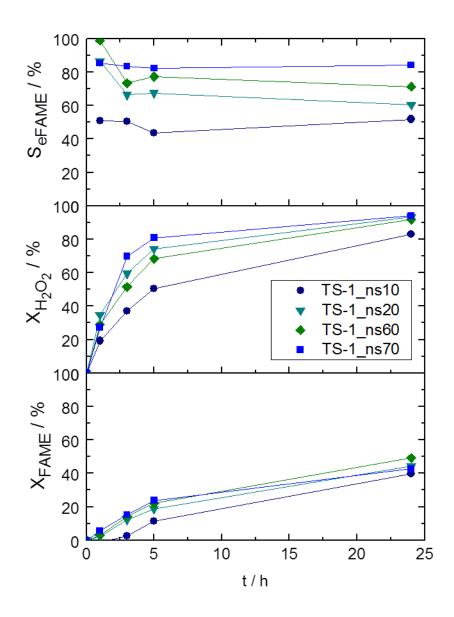
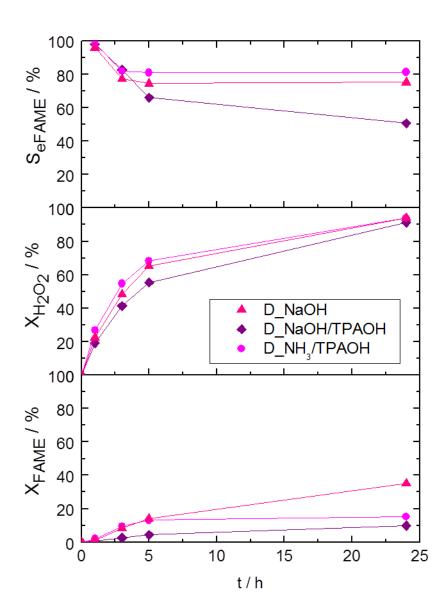

Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2015

Electronic Supplementary Material (ESI)


Highly Efficient Nano-sized TS-1 with Micro-/Mesoporosity from Desilication and Recrystallization for the Epoxidation of Biodiesel with H_2O_2

N. Wilde, M. Pelz, S.G. Gebhardt, and R. Gläser*


Institute of Chemical Technology, Universität Leipzig, Linnéstr. 03, 04103 Leipzig, Germany

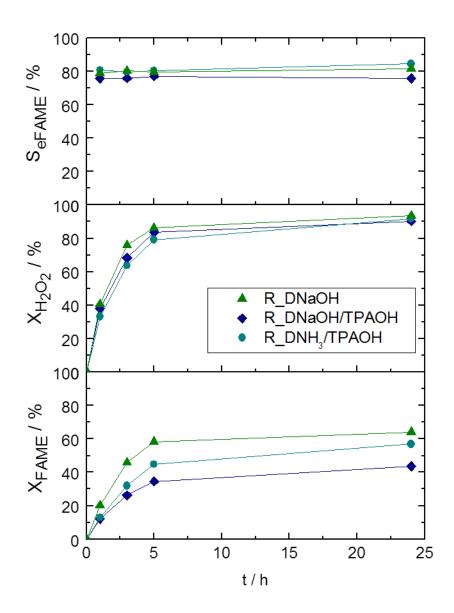

Figure S1: BJH pore size distributions of desilicated (D-series) (left part) and recrystallized TS-1 (R_D-series) (right part) calculated from the desorption branch (open symbols) as well as the adsorption branch (closed symbols) of the nitrogen sorption isotherms. The pore size distribution of TS-1_ns70 is given for comparison.

Figure S2: Conversion of biodiesel (X_{FAME}), epoxide selectivity (S_{eFAME}) and conversion of hydrogen peroxide (X_{H2O2}) as a function of reaction time in the epoxidation of Biodiesel over nano-sized TS-1_ns obtained after different times of microwave irradiation during synthesis (*V*_{acetonitrile} = 10 cm³, *C*_{FAME} = 0,03 mol L⁻¹, (*n*_{H2O2}/*n*_{FAME}) = 5 mol mol⁻¹, *m*_{cat.}= 150 mg, T= 323 K).

Figure S3: Conversion of biodiesel (X_{FAME}), epoxide selectivity (S_{eFAME}) and conversion of hydrogen peroxide (X_{H2O2}) as a function of reaction time in the epoxidation of biodiesel over desilicated nano-sized TS-1 (D-series) ($V_{acetonitrile} = 10 \text{ cm}^3$, $C_{FAME} = 0.03 \text{ mol L}^{-1}$, $(n_{H2O2}/n_{FAME}) = 5 \text{ mol mol}^{-1}$, $m_{cat} = 150 \text{ mg}$, T= 323 K).

Figure S4: Conversion of biodiesel (X_{FAME}), epoxide selectivity (S_{eFAME}) and conversion of hydrogen peroxide (X_{H2O2}) as a function of reaction time in the epoxidation of biodiesel over recrystallized nano-sized TS-1 (R_D-series) ($V_{acetonitrile} = 10 \text{ cm}^3$, $c_{FAME} = 0.03 \text{ mol L}^{-1}$, (n_{H2O2}/n_{FAME}) = 5 mol mol⁻¹, m_{cat} = 150 mg, T= 323 K).