Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2015

Electronic Supplementary Information (ESI)

From microcrystalline cellulose to hard- and softwood-based feedstocks: their hydrogenolysis to polyols over a highly efficient ruthenium-tungsten catalyst

Authors: Katarína Fabičovicová^a, Martin Lucas^a, Peter Claus*^a

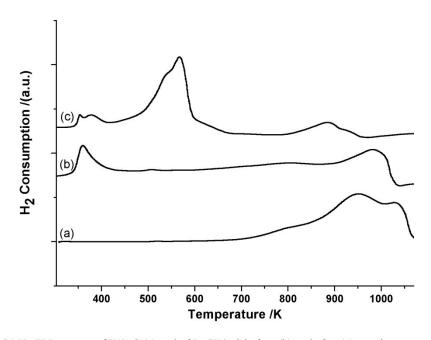
Affiliations:

^a Technical University Darmstadt, Dept. Chemistry, Chemical Technology II, Alarich-Weiss-Straße 8,64287 Darmstadt, Germany.

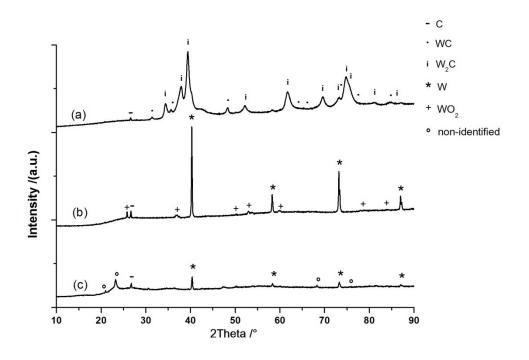
Fax: +49 6151 164788; Tel: +49 6151 165369; E-mail: claus@tc2.tu-darmstadt.de

This section includes:

Supplementary Text Figs. S1 to S4 Table S1


Supplementary Text

Structural features of Ru/W/AC after cellulose hydrogenolysis (curve c of Figs. S1, S2)


Compared to the fresh Ru/W/AC catalyst which showed one TPR peak with a maximum at 360 K allocated to ruthenium dioxide reduction (reduction temperature of polycrystalline $RuO_2 = 434$ K (39), the two peaks in the low-temperature region of the used catalyst indicates either the reduction of two different oxidized ruthenium species (RuO_x) formed in hot compressed water or the presence of smaller and larger particles of ruthenium dioxide (39). The hydrogen consumption in the region of 450-600 K is assigned to the reduction of oxygenates adsorbed on the catalyst surface during the reaction. The diffractogram revealed the presence of tungsten and traces of a phase which cannot be identified with the help of reference codes.

XRD reference codes: 00-026-1080, C; 00-032-1393, WO₂; 98-007-1732, W; 01-073-0471, WC; 98-009-9060, W₂C (HighScorePlus (version 3.0.d) using data bases PAN ICSD (40) and PDF2 flat file (41)).

- 39. J. Assmann, PhD Thesis, Ruhr-University Bochum, 2004.
- 40. ICSD Database FIZ Karlsruhe 2009-2.
- 41. PDF-2 Release 1999 (ICDD).

 $\textbf{Fig. S1} \text{ H}_2\text{-TPR pattern of W/AC (a) and of Ru/W/AC before (b) and after (c) reaction.}$

 $\textbf{Fig. S2} \ \text{XRD patterns of W/AC (a) and Ru/W/AC before (b) and after (c) reaction.}$

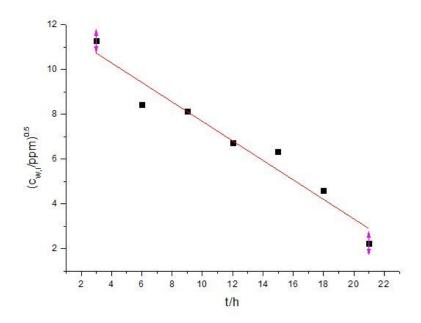
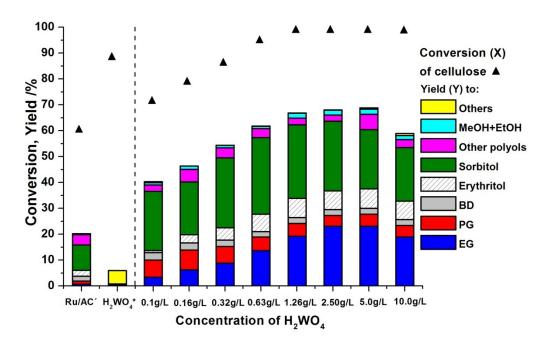



Fig. S3 Kinetics of tungsten leaching.

Fig. S4 Cellulose conversions and product yields for the hydrogenolysis of cellulose over Ru/AC catalyst in combination with different amounts of tungsten acid. Reaction conditions: 0.5 g catalyst, 5 g cellulose, 100 mL water, reaction temperature 493 K, 65 bar of hydrogen pressure (measured at reaction temperature), 1000 rpm, 3 hours reaction time, ': experiment only with 0.5 g of Ru/AC, *: experiment only with 0.5 g of tungsten acid.

Table S1. Carbon efficiency coefficients (CEL) for experiments with ball-milled cellulose.

#	Time of ball-milling	Reaction Time	CEL
	[min]	[h]	[%]
1	0	1	76.4
2	0	2	81.5
3	0	3	76.7
4	4	1	79.5
5	4	2	76.4
6	4	3	74.2
7	15	1	68.5
8	15	2	66.3
9	15	3	64.9
10	30	3	59.5
11	120	3	56.7
12	720	3	18.5
13	4 mix-milling	3	89.9