Electronic Supplementary Information (ESI) for:

Bioconversion of oxygen-pretreated Kraft lignin to microbial lipid

with oleaginous *Rhodococcus opacus* DSM 1069

Zhen Wei^{a,b}, Guangming Zeng^{a,b}, Fang Huang^c, Matyas Kosa^c, Danlian Huang^{a,b},

Arthur J. Ragauskas^{c,d*}

a College of Environmental Science and Engineering, Hunan University, Changsha 410082, People's Republic of China

b Key Laboratory of Environment Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, People's Republic of China

c School of Chemistry and Biochemistry, Institute for Paper Science and Technology, Georgia Institute of Technology, Atlanta, GA 30332, USA

d Department of Chemical and Biomolecular Engineering, Department of Forestry, Wildlife, and Fisheries, The University of Tennessee-Knoxville, 1512 Middle Drive, Knoxville, TN 37996-2200, USA

Corresponding authors:

*Arthur J. Ragauskas (Will handle correspondence at all stages of refereeing and publication)

Tel: +14048949701; Fax: +14048944778.

E-mail address: aragausk@utk.edu

Address: Department of Chemical and Biomolecular Engineering, Department of Forestry, Wildlife, and Fisheries, The University of Tennessee-Knoxville, 1512 Middle Drive, Knoxville, TN 37996-2200, USA

* Guangming Zeng

Tel.: +8673188822754; fax: +86073188823701.

E-mail address: zgming@hnu.edu.cn;

Address: College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China.

Figure captions

Fig. S1. Comparing CFU results of the two fermentation system: Kraft lignin (the top line), O_2 -pretreated Kraft lignin (the bottom line), 0.1 ml samples were pipetted from fermentation systems and diluted, followed by incubation in nutrient medium. The dilution ratios of KL 0-7d and O_2 -KL 0d are 10^2 , O_2 -KL 1-7d are 10^4 .

Fig. S2. Gel permeation chromatograms (measured with UV detector) (above) and changes of the weight average molecular weight (bottom) of different lignin samples.

Fig. S3. Changes of hydroxyl group contents of different lignin samples, determined by quantitative ³¹P NMR after derivatization with TMDP.

Fig. S4. Method of sample separation to obtain the residue lignin and cells.

Table S1. Cell specific, lipid specific yields and cell volumetric productivities of *R*.

 opacus DSM 1069 growing on untreated Kraft lignin.

Fig. S3


```
Fig. S4
```


Productivities —	Kraft lignin			
	12 h	36 h	60 h	120 h
Y _{cell} [g/g KL]	0.102	0.081	-	-
Y _{lipid} [g/g KL]	0.005	-	-	-
dc _{cell} /dt [mg/ml*day]	0.122	0.032	-	-

Table S1 Cell specific, lipid specific yields and cell volumetric productivities of *R*.*opacus* DSM 1069 growing on untreated Kraft lignin.