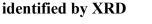
Supporting information


Solid state synthesis of nano-sized AlH₃ and its de-

hydriding behaviour

Duan Congwen, Hu Lianxi,* and Xue Dan

School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China E-mail: 12B909049@hit.edu.cn

Figure S1. Proposed reagent of the LiH, CaH₂, MgH₂ and AlCl₃ phase as

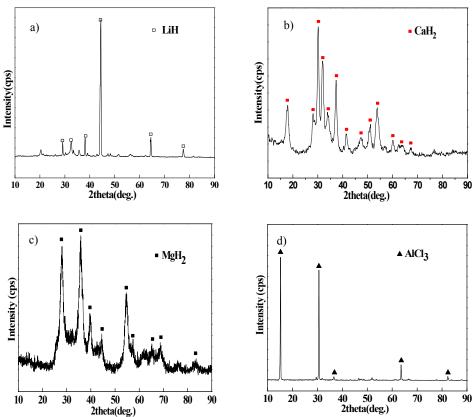


Fig. S1 XRD patterns of a) LiH phase, b) CaH_2 phase, c) Mg powders milled in hydrogen

for 20h, d) AlCl₃ phase,

It is suggested from Fig. S1c that the solid-gas reaction was completed until milling in hydrogen for 20 h. Subsequently, the MgH₂ phase was fully formed. Calculated by Scherrer equation based on the XRD patterns, the average crystallite size of MgH₂

phase can reach 10 nm.

Figure S2. Proposed reagent of the MgH₂ and AlCl₃ phase as identified by SEM

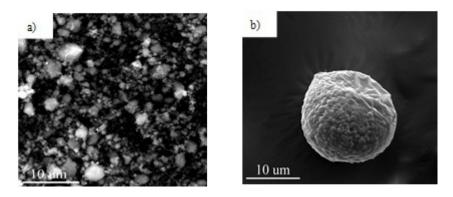


Fig. S2 SEM morphology of a) MgH₂ phase, b) AlCl₃ phase.

Upon milling for 20h, it can be seen from the Fig. 2a that most individual particles of MgH_2 were between 1 and 2 μ m in size.

Figure S3. The isothermal desorption curves of the MgH₂/AlCl₃ powders

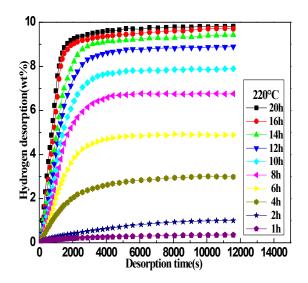


Fig. S3 Isothermal desorption curves of the MgH₂/AlCl₃ powders milled at 400 rpm with a ball to powder mass ratio (BPR) of 60:1 for different times.