Supplementary material

One-pot synthesis of B-doped three dimensional reduced graphene oxide *via* supercritical fluid for oxygen reduction reaction

Yazhou Zhou,^{ab} Clive Hsu Yen,^c Shaofang Fu,^a Guohai Yang,^a Chengzhou Zhu,^a Dan Du,^a

Pui Ching Wo,^a Xiaonong Cheng,^b Chien M. Wai^c Juan Yang,^{*b} and Yuehe Lin^{*a}

The number of transferred electrons (n) per O_2 molecule in the ORR and kinetic current density can be calculated from the Koutecky-Levich equation shown as follows,¹

$$\frac{1}{J} = \frac{1}{J_L} + \frac{1}{J_K} = \frac{1}{B\omega^{1/2}} + \frac{1}{J_K}$$
(1)

$$B = 0.62nFC_0(D_0)^{2/3}v^{-1/6}$$
⁽²⁾

where *J* is the measured current density, J_K and J_L are the kinetic- and diffusion-limiting current densities, respectively, ω is the angular velocity of the disk ($\omega = 2\pi N$, *N* is the linear rotation speed), *n* is the overall number of electrons transferred in ORR, *F* is the Faraday constant (F=96485 C mol⁻¹), C_0 is the bulk concentration of O₂ ($C_0 = 1.2 \times 10^{-6}$ mol cm⁻³), D_0 is the diffusion coefficient of O₂ in 0.1 M KOH ($D_0 = 1.9 \times 10^{-5}$ cm² s⁻¹), and *v* is the kinematic viscosity of the electrolyte (v = 0.01 cm² s⁻¹). The constant of 0.2 is adopted when the rotation rate is expressed in rpm.^{1,2}

Fig. S1. SEM images showing morphology of sample fabricated under the same preparation conditions but of from different initial GO concentration at (a) 5 mg mL⁻¹ and (b) 15 mg mL⁻¹.

Fig. S2 (a) Nitrogen adsorption/desorption isotherms and (b) pore size distribution in B1-3DrGO.

Fig. 3. XPS C 1s spectrum of GO sheets.

Fig. S4. ORR polarization curves of (a) B1-3DrGO and (b) commercial Pt/C (20 wt. %) in O₂- saturated 0.1 M KOH solution with various rotation rates at a scan rate of 10 mV s⁻¹. Koutecky–Levich (K-L) plots of (c) B1-3DrGO and (d) commercial Pt/C (20 wt. %) at different electrode potentials. The experimental data were obtained from (a) and (b), respectively.

Fig. S5. Cyclic voltammograms of (a) B2-3DrGO and (b) commercial Pt/C (20 wt. %) before and after 2500 cycles in O₂-saturated 0.1 M KOH solution at a scan rate of 10 mV s⁻¹ and a rotating rate of 200 rpm.

Sample	C 1s fitting Binding energy (eV)(relative area percentage)				C/O ratio	B content (atomic ratio)
	C=C/C-C	C-0	С-О-С	С=0/0-С=0		
GO	284.7 (31.56 %)	285.7 (6.96 %)	286.7 (56.96 %)	288.5 (4.43%)	1.31	/
B1-3DrGO	284.6 (51.15 %)	285.5 (23.07 %)	286.7 (19.87 %)	287.8 (5.91%)	4.5	2.1 %
B2-3DrGO	284.5 (68.94 %)	285.7 (18.41 %)	/	288.8 (12.65%)	5.9	2.9 %

Table S1. The C 1s peak position, the relative atomic percentage of various functional

groups and B content in GO sheets, B1-3DrGO and B2-3DrGO products.

Reference

(1) Li, Y.; Cheng, H. H.; Hu, Y.; Shi, G. Q.; Dai, L. M.; Qu, L. T. J. Am. Chem. Soc. 2012, 134, 15-18.

(2) Sharifi, T.; Hu, G.; Jia, X. E.; Wagberg, T. ACS Nano 2012, 6, 8904-8912.