Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2015

Electronic Supplementary Information

Almost complete dissolution of woody biomass with tetra-n-butylphosphonium hydroxide aqueous solution at 60 °C

Mitsuru Abe, a,b Sachiko Yamanaka, a,b Hajime Yamadac, Tatsuhiko Yamadac and Hiroyuki Ohno*a,b

- ^a Department of Biotechnology, Tokyo University of Agriculture and Technology, Naka-cho, 2-24-16, Koganei, Tokyo 184-8588, Japan. Fax: +81-42-388-7024; Tel: +81-42-388-7024; E-mail: ohnoh@cc.tuat.ac.jp
- ^b Functional Ionic Liquids Laboratories, Graduate School of Engineering, Naka-cho, 2-24-16, Koganei, Tokyo 184-8588, Japan. Fax: +81-42-388-7024; Tel: +81-42-388-7024; E-mail: ohnoh@cc.tuat.ac.jp
- ^c Department of Biomass Chemistry, Forestry and Forest Products Research Institute, Matsunosato 1, Tsukuba, Ibaraki 305-8687, Japan. Fax: +81-29-874-3720; Tel: +81-29-829-8348; E-mail: yamadat@affrc.go.jp

Water content of woods

The water content of each wood powder was measured with thermogravimetric analysis (TGA). The TGA measurements were performed using a SEIKO TG/DTA 220 instrument with a heating rate of 10 °C min⁻¹ from 25 to 110 °C, and retain at 110 °C for 20 min under nitrogen gas.

Table S1. Water content of woody biomass used in this study.

Woody biomass	Water content (wt%)
Oak	2.9
Eukalyptus	4.3
Cedar	5.9
Pine	5.3
Spruce	5.6
Ginkgo	4.6

Appearance of [P_{4,4,4,4}]OH aq. solution/wood mixtures

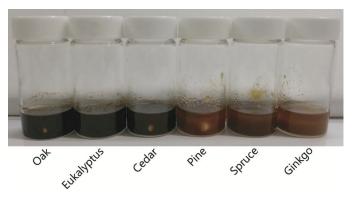


Figure S1. Appearance of 50% $[P_{4,4,4,4}]OH$ aq. solution/wood mixtures (5 wt% wood) after 1 h stirring without heating (at 25 °C). White things in some vials are magnetic stirring bars.

Correlation between dissolution degree of woods and their components

Amounts of holocellulose and α -cellulose were decided with reference to a paper which was written by Pettersen *et al.* Lignin contents were determined with sulfuric acid method published by Ritter *et al.* in 1932. Sum amount of β -and γ -cellulose (g) was determined by following equation.

 $[\beta\text{-Cellulose}] + [\gamma\text{-Cellulose}] = \text{Holocellulose} - [\alpha\text{-Cellulose}]$ (Eq.)

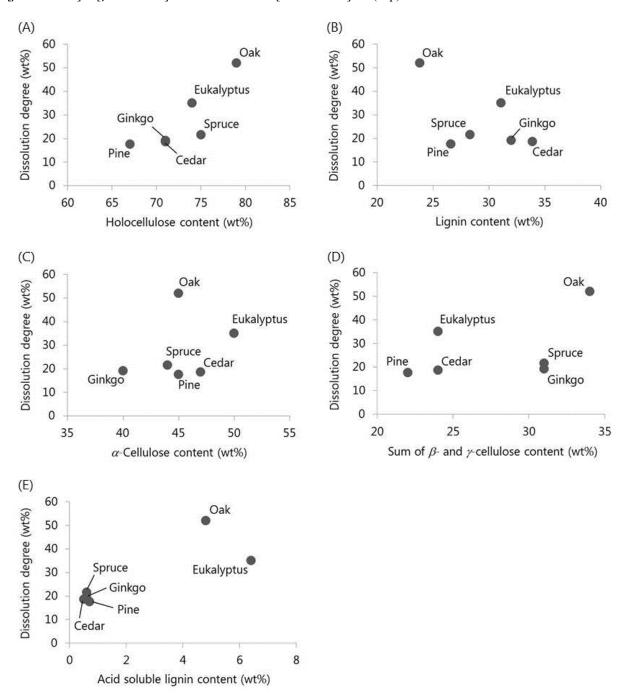


Figure S2. Correlation between dissolution degree of woods and their components, (A) holocellulose, (B) lignin, (C) α -cellulose, (D) sum of β - and γ -cellulose, and (E) acid soluble lignin.

Reference

- 1. R. C. Pettersen, in *The Chemistry of Solid Wood*, ed. R. M. Rowell, ACS Publications, Washington, DC, 1984, vol. 207, pp. 57-126.
- 2. G. J. Ritter, R. M. Seborg and R. L. Mitchell, *Ind. Eng. Chem. Anal. Ed.*, 1932, 4, 202-204.