Electronic Supplementary Information Deep Eutectic Solvents: biorenewable reaction media for Au(I)-catalysed cycloisomerisations and one-pot tandem

cycloisomerisation/Diels-Alder reactions

Cristian Vidal,^a Lukas Merz,^a and Joaquín García-Álvarez*,^a

Laboratorio de Compuestos Organometálicos y Catálisis (Unidad Asociada al CSIC). Departamento de Química Orgánica e Inorgánica (IUQOEM), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Química, Universidad de Oviedo, E-33071, Oviedo, Spain

Table of Contents

Drawing of the crystal structure of complex 3 showing the intermolecular aurophilic Au(I)…Au(I) interaction	S2
Crystal data and structure refine for complex 3	S2
¹ H NMR spectra for furans 5a-f	S5
¹ H NMR spectra for heterocycles 7a-f	S 8
References	S11

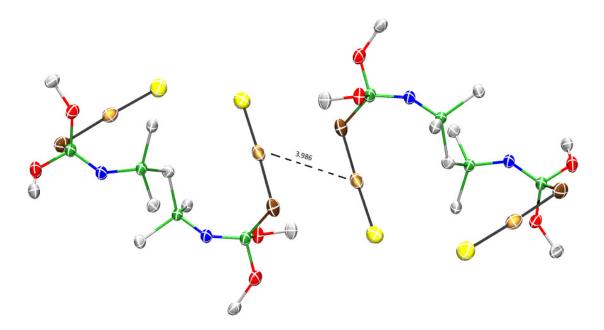


Figure ESI-1. Drawing of the crystal structure of complex 3 showing the intermolecular aurophilic $Au(I) \cdots Au(I)$ interaction.

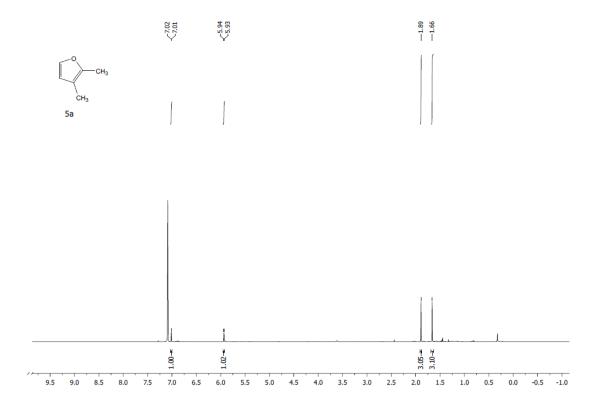
Crystal data and structure refine for complex 3

Crystals suitable for X-ray diffraction analysis were obtained by slow diffusion of hexane into a saturated solution of complex **3** in dichloromethane. The most relevant crystal and refinement data are collected in Table ESI-1.

Diffraction data were recorded on an Oxford Diffraction Xcalibur Nova (Agilent) single crystal diffractometer, using Cu-K α radiation (λ = 1.5418 Å). Images were collected at a 63 mm fixed crystal-detector distance, using the oscillation method, with 1° oscillation and variable exposure time per image (2-8 s). Data collection strategy was calculated with the program CryAlis Pro CCD.¹ Data reduction and cell refinement were performed with the programs CryAlis Pro RED.¹ An empirical absorption correction was applied using the SCALE3 ABSPACK algorithm as implemented in the program CrysAlis Pro RED.¹

The software package WINGX² was used for space group determination, structure solution and refinement. The structure was solved by direct methods using SHELXL97.³

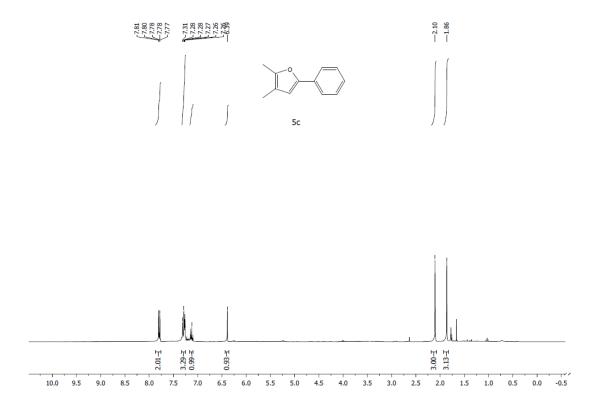
Isotropic least-squares refinement on F² using SHELXL97 was performed.³ During the final stages of the refinements, all the positional parameters and the anisotropic temperature factors of all the non-H atoms were refined. The H atoms were geometrically located and their coordinates were refined riding on their parent atoms. The maximum residual electron density is located near to heavy atoms.

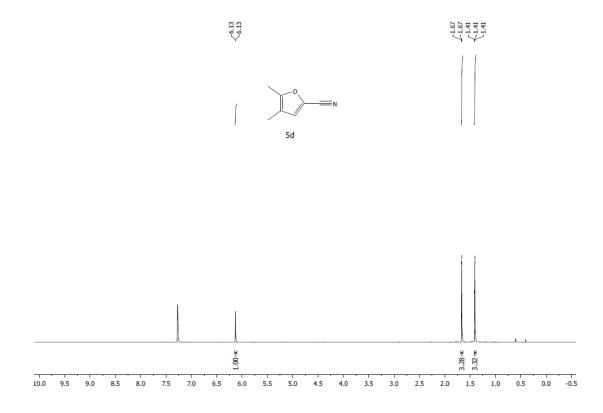

The function minimized was $([\Sigma w F_o^2 - F_c^2)/\Sigma w (F_o^2)]^{1/2}$ where $w = 1/[\sigma^2 (F_o^2) + (aP)^2 + bP]$ (a and b values are collected in Table ESI-1) with $\sigma^2 (F_o^2)$ from counting statistics and $P = (Max (F_o^2, 0) + 2F_c^2)/3$.

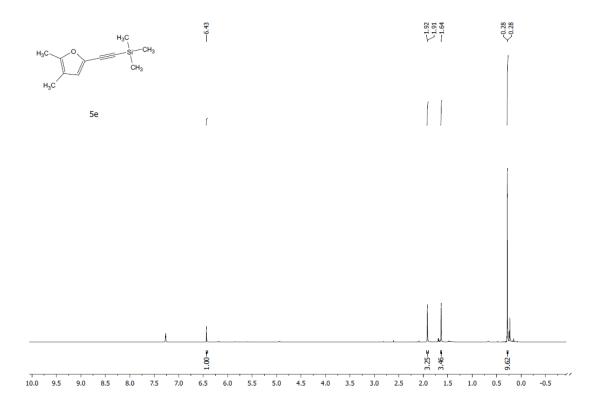
Atomic scattering factors were taken from the International Tables for X-Ray Crystallography.⁴ The crystallographic plots were made with ORTEP.⁵

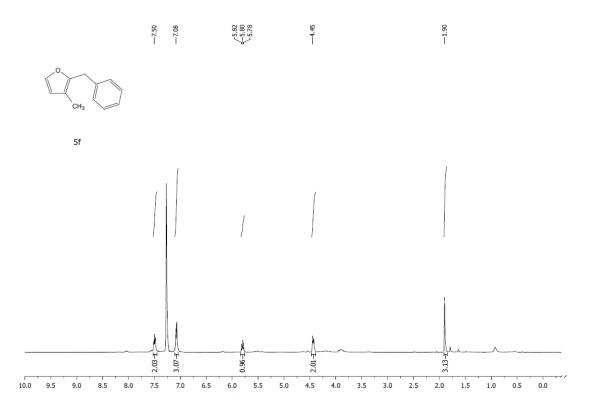

	3
Empirical formula	$C_{49}H_{42}Au_2Cl_2N_2O_4P_4S_2$
Formula weight	1375.37
Temperature/K Wavelength/Å	297(4) 1.54180
Crystal system	monoclinic
Space group	C2/ _c
a/Å; α/°	25.848(2); 90.0
b/Å; β/°	1.2564(5); 122.413(11)
<i>c</i> /Å; γ/	20.6909(16); 90.0
Ζ	4
Volume/Å ³	5082.2(6)
Calculated density/Mg m ⁻³	1.494
μ/mm^{-1}	8.23
<i>F</i> (000)	2279
Crystal size/mm	0.04 x 0.08 x 0.31
heta range/°	43.15 to 94.50
Index ranges	$-25 \le h \le 31$ $-9 \le k \le 13$ $-25 \le l \le 18$
No. of reflns. collected	12034
No. of unique reflns.	4673 [(R(int) = 0.0352]
Completeness to θ_{\max}	97.6
No. of parameters/restraints	298/0
Goodness-of-fit on F^2	1.129
Weight function (a, b)	0.0544, 24.1639
$R_1 \left[I > 2\sigma(I)\right]^a$	0.0428
$wR_2[I > 2\sigma(I)]^a$	0.1171
Largest diff. peak and hole/e Å-3	0.970 and -1.960

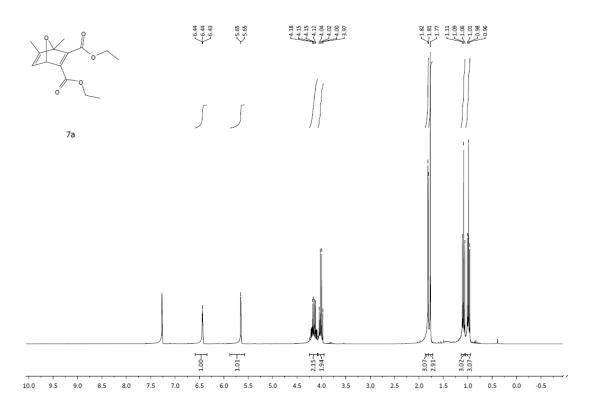
Table ESI-1 Crystal data and structure refine for compound 3

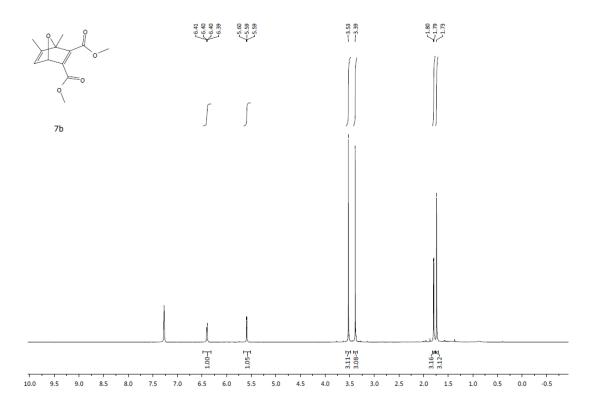

2,3-dimethylfuran (5a)

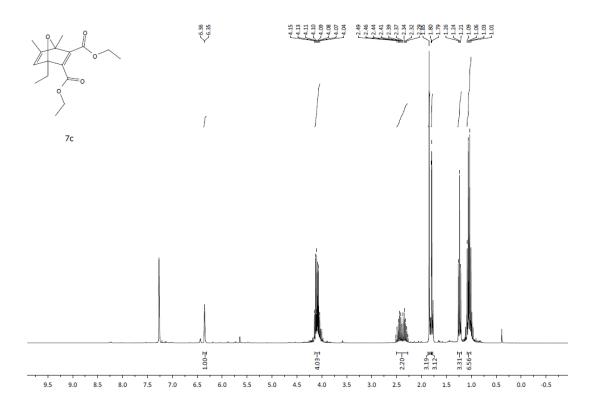

5-ethyl-2,3-dimethylfuran (5b)


5-phenyl-2,3-dimethylfuran (5c)

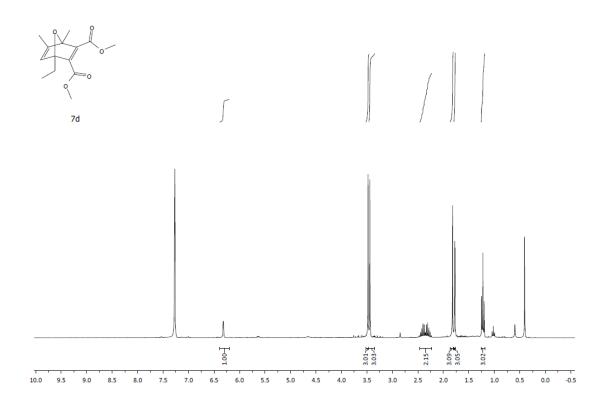

4,5-dimethylfuran-2-carbonitrile (5d)

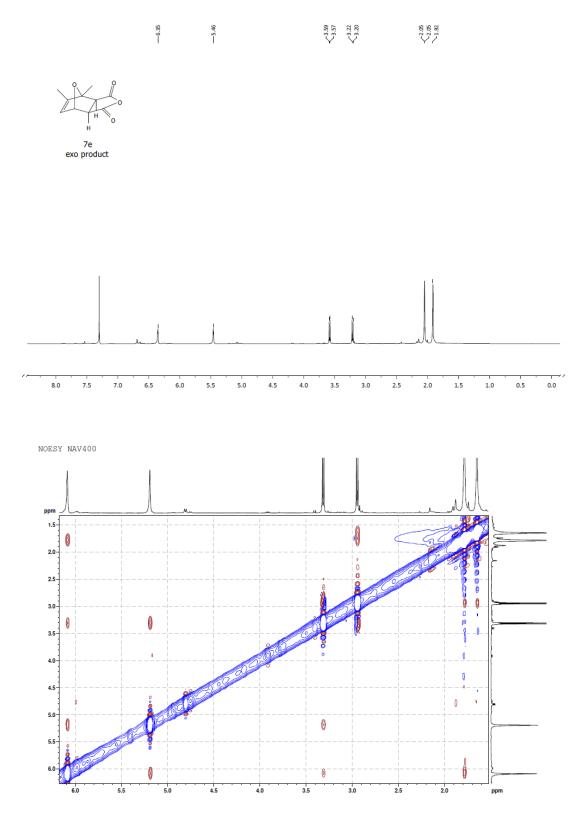

((4,5-dimethylfuran-2-yl)ethynyl)trimethylsilane (5e)

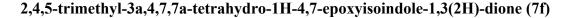

2-benzyl-3-methylfuran (5f)

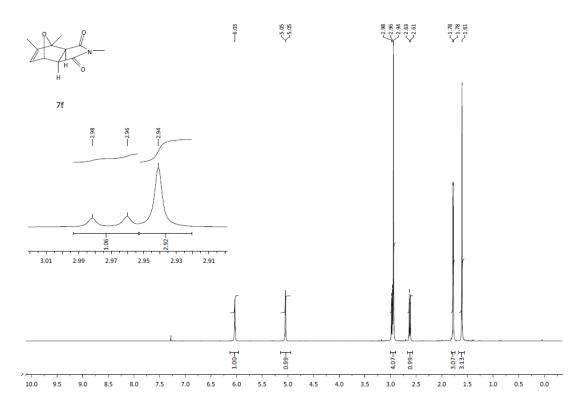

Diethyl 1,6-dimethyl-7-oxabicyclo[2.2.1]hepta-2,5-diene-2,3-dicarboxylate (7a)

Dimethyl 1,6-dimethyl-7-oxabicyclo[2.2.1]hepta-2,5-diene-2,3-dicarboxylate (7b)


Diethyl 1-ethyl-4,5-dimethyl-7-oxabicyclo[2.2.1]hepta-2,5-diene-2,3-dicarboxylate (7c)


1-ethyl-4,5-dimethyl-7-oxabicyclo[2.2.1]hepta-2,5-diene-2,3-


dicarboxylate (7d)


Dimethyl

4,5-dimethyl-3a,4,7,7a-tetrahydro-4,7-epoxyisobenzofuran-1,3-dione (7e)

References

(1) *CrysAlis^{Pro} CCD, CrysAlis^{Pro} RED*, Oxford Diffraction Ltd., Abingdon, Oxfordshire, U.K., 2008.

(2) L. J. Farrugia, J. Appl. Crystallogr., 2012, 45, 849.

(3) G. M. Sheldrick, *SHELXL97: Program for the Refinement of Crystal Structures*, University of Göttingen, Göttingen, Germany, 1997.

(4) *Tables for X-Ray Crystallography*, Kynoch Press, Birmingham, U.K., 1974, *Vol. IV* (present distributor: Kluwer Academic Publishers, Dordrecht, The Netherlands).

(5) L. J. Farrugia, J. Appl. Crystallogr., 1997, 30, 565.