Supporting Information

Catalytic Allylic Arylation of Cinnamyl Carbonates over Palladium

Nanoparticles Supported on a Thermoresponsive Polymer in Water

Yongwoo Lee,^a Saira Shabbir,^b Sinyoung Lee,^a Hyunsoek Ahn^a and Hakjune Rhee^{*a,b}

^[a]Department of Bionanotechnology, Hanyang University Sangnok-gu, Ansan-si, Gyeonggi-do, 426-791, South Korea

^[b]Department of Chemistry and Applied Chemistry, Hanyang University Sangnok-gu, Ansan-si, Gyeonggi-do, 426-791, South Korea

*Corresponding author E-mail: hrhee@hanyang.ac.kr Tel: (+82) 31-400-5498 Fax: (+82) 31-400-5457 hrhee@hanyang.ac.kr

Table of Contents

Differential Scanning Calorimetry (DSC) curve of poly(NIPAM-co-4-VP)	S3
Energy Dispersive X-ray Analysis (EDXA) measurements	S3
X-ray Photon Spectroscopy (XPS) Analysis	S3
Inductively Coupled Plasma (ICP) Report	S4
Spectroscopic data of the products	S4
References	S11

Differential Scanning Calorimetry (DSC) curve of poly(NIPAM-co-4-VP)

Figure S1. Differential Scanning Calorimetry (DSC) curve of poly(NIPAM-co-4-VP)

Energy Dispersive X-ray Analysis (EDXA) measurements

Figure S2. Energy Dispersive X-ray Analysis (EDXA) measurements of the catalyst

X-ray Photon Spectroscopy (XPS) Analysis

Figure S4. X-ray Photon Spectroscopy (XPS) spectrum of the fresh catalyst

Inductively Coupled Plasma (ICP) Report

Table S1. Inductively Coupled Plasma (ICP) quantitative measurements for Pd(0) in fresh catalyst and the reaction mixture.

Entry	Sample Name	Sample	Element investigated	Result (ppm)	Observation
1	Pd@PNIPAM	Fresh catalyst	Pd	19600	0.184mmol Pd/g of polymer
2	water	Filtrate	Pd	20	Insignificant leaching out of Pd after the 1 st recycle

Spectroscopic data of the products

NMR Spectroscopic data of Cinnamyl methyl carbonates (1a-c) and the coupling products of allylic arylation (3a-I)

Cinnamyl methyl carbonate (1a):¹ Colorless oil, 3.229 g (84%); $R_f = 0.37$ (hexanes/EtOAc, 20/1, v/v) ¹H

NMR (400 MHz, CDCl₃, TMS): δ 7.26-7.41 (m, 5H, ArH), 6.69 (d, J = 16.0 Hz, 1H, CH=), 6.30 (dt, J = 15.6, 6.4

Hz, 1H, CH=), 4.79 (d, J = 6.4 Hz, 2H, CH₂), 3.81 (s, 3H, OCH₃).

(E)-3-(4-Fluorophenyl)allyl methyl carbonate (1b):¹ Colorless oil, 3.447 g (82%); $R_i = 0.52$

(hexanes/EtOAc, 20/1, v/v); ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.36 (dd, *J* = 8.8, 5.6 Hz, 2H, ArH), 7.02 (t, *J* =

8.8 Hz, 1H, ArH, CH=), 6.65 (d, J = 15.6 Hz, 1H, CH=), 6.22 (dt, J = 15.6, 6.4 Hz, 2H, ArH), 4.78 (dd, J = 6.8,

1.6 Hz, 2H, CH₂), 3.81 (s, 3H, OCH₃).

(*E*)-3-(4-Methoxyphenyl)allyl methyl carbonate (1c):¹ Yellowish gummy solid, 3.911 g (88%); *R*_f = 0.24 (hexanes/EtOAc, 20/1, v/v); ¹H NMR (400 MHz, CDCl₃, TMS): ō 7.33 (d, *J* = 8.4 Hz, 2H, ArH), 6.86 (d, *J* = 8.8 Hz, 2H, ArH), 6.64 (d, *J* = 16.0 Hz, 1H, CH=), 6.16 (dt, *J* = 15.6, 6.8 Hz, 1H, CH=), 4.77 (dd, *J* = 6.4, 1.2 Hz, 2H, CH₂), 3.81 (s, 3H, OCH₃).

(1*E***)-1,3-Diphenylpropene (3a):**² Colorless oil, 0.184 g (95%); *R_f* = 0.71 (hexanes/EtOAc, 10/1, v/v); ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.18-7.37 (m, 10H, ArH), 6.46 (d, *J* = 16.0 Hz, 1H, CH=), 6.36 (dt, *J* = 16.0, 6.4 Hz, 1H, CH=), 3.55 (d, *J* = 6.4 Hz, 2H, CH₂).

(1*E*)-3-(4-Methylphenyl)-1-phenylpropene (3b):² Colorless oil, 0.195 g (94%); *R_f* = 0.75 (hexanes/EtOAc, 10/1, v/v); ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.36 (d, *J* = 7.6 Hz, 2H, ArH), 7.29 (t, *J* = 7.2 Hz, 2H, ArH), 7.20 (t, *J* = 7.2 Hz, 1H, ArH), 7.13 (m, 4H, ArH), 6.45 (d, *J* = 15.6 Hz, 1H, CH=), 6.35 (dt, *J* = 16.0, 6.4 Hz, 1H, CH=), 3.52 (d, *J* = 6.8 Hz, 2H, CH₂), 2.34 (s, 3H, CH₃).

(1*E***)-3-(4-Chlorophenyl)-1-phenylpropene (3c):**² Colorless oil, 0.192 g (96%); *R*_f = 0.59 (hexanes/EtOAc, 10/1, v/v); ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.36 (d, *J* = 7.6 Hz, 2H, ArH), 7.26-7.32 (m, 4H, ArH), 7.16-7.24 (m, 3H, ArH), 6.44 (d, *J* = 16.0 Hz, 1H, CH=), 6.31 (dt, *J* = 16.0, 6.4 Hz, 1H, CH=), 3.52 (d, *J* = 6.8 Hz, 2H, CH₂).

(1*E***)-3-(4-Methoxyphenyl)-1-phenylpropene (3d):**² Colorless oil, 0.203 g (91%); *R_t* = 0.60 (hexanes/EtOAc, 10/1, v/v); ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.36 (d, *J* = 7.6 Hz, 2H), 7.29 (t, *J* = 7.2 Hz, 2H, ArH), 7.19 (t, *J* = 7.6 Hz, 1H, ArH), 7.16 (d, *J* = 8.4 Hz, 2H, ArH), 6.86 (d, *J* = 8.0 Hz, 2H, ArH), 6.43 (d, *J* = 15.6 Hz, 1H, CH=), 6.34 (dt, *J* = 16.0, 6.4 Hz, 1H, CH=), 3.80 (s, 3H, OCH₃), 3.49 (d, *J* = 6.4 Hz, 2H, CH₂).

(1*E*)-3-(4-Hydroxyphenyl)-1-phenylpropene (3e):³ White solid, 0.193 g (92%), mp. 64-65 °C; *R_f* = 0.32 (hexanes/EtOAc, 10/1, v/v); ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.42 (d, *J* = 7.2 Hz, 2H, ArH), 7.27-7.35 (m, 4H,

ArH), 6.97 (d, J = 7.2 Hz, 2H, ArH), 6.74 (d, J = 16.0 Hz, 1H, CH=), 6.52 (dt, J = 15.6, 6.0 Hz, 1H, CH=), 4.71 (d, J = 16.0 H

J = 5.8 Hz, 2H, CH₂).

(1*E*)-3-(4-Formylphenyl)-1-phenylpropene (3f):⁴ Colorless oil, 0.199 g (90%); $R_f = 0.37$ (hexanes/EtOAc,

10/1, v/v); ¹H NMR (400 MHz, CDCl₃, TMS): δ 9.99 (s, 1H, CHO), 7.84 (d, J = 8.0 Hz, 2H, ArH), 7.29-7.43 (m,

7H, ArH), 6.49 (d, J = 15.6 Hz, 1H, CH=), 6.34 (dt, J = 15.6, 6.8 Hz, 1H, CH=), 3.64 (d, J = 6.8 Hz, 2H, CH₂).

(1*E*)-3-(4-Carboxyphenyl)-1-phenylpropene (3g):⁵ Colorless oil, 0.205 g (86%); $R_f = 0.36$ (hexanes/EtOAc,

20/1, v/v); ¹H NMR (400 MHz, CDCl₃, TMS): δ 8.09 (d, *J* = 6.8 Hz, 2H, ArH), 7.57 (t, *J* = 7.6 Hz, 1H, ArH), 7.26-7.48 (m, 6H, ArH), 6.75 (d, *J* = 16.0 Hz, 1H, CH=), 6.42 (dt, *J* = 16.0, 6.4 Hz, 1H, CH=), 4.99 (d, *J* = 6.4 Hz, 2H, CH₂).

(1*E*)-3-(4-Methoxycarbonylphenyl)-1-phenylpropene (3h):⁶ Colorless oil, 0.216 g (86%); $R_f = 0.38$ (hexanes/EtOAc, 20/1, v/v); ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.98 (d, J = 8.4 Hz, 2H, ArH), 7.21-7.37 (m, 7H, ArH), 6.47 (d, J = 15.6 Hz, 1H, CH=), 6.33 (dt, J = 16.0, 6.8 Hz, 1H, CH=), 3.91 (s, 3H, COOCH₃), 3.60 (d, J = 10.0 Hz, 1H, CH=), 6.34 (dt, J = 16.0, 6.8 Hz, 1H, CH=), 3.91 (s, 3H, COOCH₃), 3.60 (d, J = 10.0 Hz, 1H, CH=), 3.91 (s, 3H, COOCH₃), 3.60 (d, J = 10.0 Hz, 1H, CH=), 6.34 (dt, J = 16.0, 6.8 Hz, 1H, CH=), 3.91 (s, 3H, COOCH₃), 3.60 (dt, J = 10.0 Hz, 1H, CH=), 3.91 (s, 3H, COOCH₃), 3.60 (dt, J = 10.0 Hz, 1H, CH=), 3.91 (s, 3H, COOCH₃), 3.60 (dt, J = 10.0 Hz, 1H, CH=), 3.91 (s, 3H, COOCH₃), 3.60 (dt, J = 10.0 Hz, 1H, CH=), 3.91 (s, 3H, COOCH₃), 3.60 (dt, J = 10.0 Hz, 1H, CH=), 3.91 (s, 3H, COOCH₃), 3.60 (dt, J = 10.0 Hz, 1H, CH=), 3.91 (s, 3H, COOCH₃), 3.60 (dt, J = 10.0 Hz, 1H, CH=), 3.91 (s, 3H, COOCH₃), 3.60 (dt, J = 10.0 Hz, 1H, CH=), 3.91 (s, 3H, COOCH₃), 3.60 (dt, J = 10.0 Hz, 1H, CH=), 3.91 (s, 3H, COOCH₃), 3.60 (dt, J = 10.0 Hz, 1H, CH=), 3.91 (s, 3H, COOCH₃), 3.60 (dt, J = 10.0 Hz, 1H, CH=), 3.91 (s, 3H, COOCH₃), 3.60 (dt, J = 10.0 Hz, 1H, CH=), 3.91 (s, 3H, COOCH₃), 3.60 (dt, J = 10.0 Hz, 1H, CH=), 3.91 (s, 3H, COOCH₃), 3.60 (dt, J = 10.0 Hz, 1H, CH=), 3.91 (s, 3H, COOCH₃), 3.60 (dt, J = 10.0 Hz, 1H, CH=), 3.91 (s, 3H, COOCH₃), 3.60 (dt, J = 10.0 Hz, 1H, CH=), 3.91 (s, 3H, COOCH₃), 3.60 (dt, J = 10.0 Hz, 1H, CH=), 3.91 (s, 3H, COOCH₃), 3.60 (s, 2H, 2H) (s,

6.8 Hz, 2H, CH₂).

(1*E*)-3-(4-Nitrophenyl)-1-phenylpropene (3i):⁷ Colorless oil, 0.201 g (84%); $R_f = 0.40$ (hexanes/EtOAc,

20/1, v/v); ¹H NMR (400 MHz, CDCl₃, TMS): δ 8.18 (d, *J* = 8.8 Hz, 2H, ArH), 7.30-7.42 (m, 7H, ArH), 6.49 (d, *J* = 15.6 Hz, 1H, CH=), 6.31 (dt, 15.6, 6.8 Hz, 1H, CH=), 3.65 (d, *J* = 6.4 Hz, 2H, CH₂).

(1*E***)-3-Biphenyl-1-phenylpropene (3j)**.⁸ Colorless oil, 0.256 g (95%); *R_f* = 0.75 (hexanes/EtOAc, 20/1, v/v); ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.19-7.61 (m, 14H, ArH), 6.50 (d, *J* = 16.0 Hz, 1H, CH=), 6.39 (dt, *J* = 16.0, 6.4 Hz, 1H, CH=), 3.59 (d, *J* = 6.8 Hz, 2H, CH₂).

(1*E***)-1-(4-Fluorophenyl)-3-phenylpropene (3k):**² Colorless oil, 0.197 g (93%); *R_f* = 0.74 (hexanes/EtOAc, 4/1, v/v); ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.29-7.34 (m, 4H, ArH), 7.23-7.25 (m, 3H, ArH), 6.98 (t, *J* = 8.8 Hz, 2H, ArH), 6.41 (d, *J* = 16.0 Hz, 1H, CH=), 6.27 (dt, *J* = 15.6, 6.8 Hz, 1H, CH=), 3.54 (d, *J* = 6.4 Hz, 2H, CH₂).

(1*E***)-1-(4-Methoxyphenyl)-3-phenylpropene (3I):**² White solid, 0.206 g (92%), mp. 29-30 °C; *R_f* = 0.40 (hexanes/EtOAc, 20/1, v/v), ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.19-7.33 (m, 7H, ArH), 6.83 (d, *J* = 8.8 Hz, 2H, ArH), 6.40 (d, *J* = 15.6 Hz, 1H, CH=), 6.21 (dt, *J* = 15.6, 6.8 Hz, 1H, CH=), 3.79 (s, 3H, OCH₃), 3.53 (d, *J* = 6.8Hz, 2H, CH₂).

References

- 1. B. M. Trost, J. R. Miller, C. M. Hoffman Jr. J. Am. Chem. Soc. 2011, 133, 8165-8167.
- 2. S. M. Sarkar, Y. Uozumi, Y. M. A. Yamada, Angew. Chem. Int. Ed. 2011, 50, 9437-9441.
- 3. L. Lurd, Tetrahedron Lett. 1969, 33, 2863-2866.
- 4. H. Tsukamoto, T. Uchiyama, T. Suzuki, Y. Kondo, Org. Biomol. Chem. 2008, 6, 3005-3013.
- 5. R. Deziel, A. Ajamian, US 8796330, 2014.
- 6. X. Cui, S. Wang, Y. Zhang, W. Deng, Q. Qian, H. Gong, Org. Biomol. Chem. 2013, 11, 3094-3097.
- J. Lia, J. Penga, Y. Baia, L.Chena, G. Lai, *Phosphorus, Sulfur Silicon Relat. Elem.* 2011, 186, 1621-1625.
- 8. M. Li, Y. Wang, S. Tian, Angew. Chem. Int. Ed. 2012, 51, 2968-2971.