Electronic Supplementary Information

Synthesis of Biologically Active Natural Products, Aspergillides A and B, Entirely from Biomass-Derived Platform Chemicals

Peng-Fei Koh,^b Teck-Peng Loh^{*a,b,c*}

^aHefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026 (P. R. China).

^bDivision of Chemistry & Biological Chemistry, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798.

^cCollaborative Innovation Center of Chemistry for Energy Materials, P. R. China

Table of Contents

1.	General Methods	.S2
2.	Synthesis and characterization of compounds	S 3
3.	Determination of enantiomeric excess by HPLC	S20
4.	Optimization Tables	. S22
5.	Copies of ¹ H NMR and ¹³ C NMR Spectras	.S29
6.	X-Ray Structures and CCDC Numbers for <i>rac-23</i>	S 71

1. General Methods

All reagents were commercially purchased and were used as received for the reactions. All reactions were carried out in oven-dried glassware while THF was freshly distilled from Na/Benzophenone ketyl and DCM was freshly distilled from Calcium Hydride. Thin-layer chromatography (TLC) was conducted with Merck 60 F254 precoated silica gel plate (0.2 mm thickness) and visualized under UV, by potassium permanganate or ceric ammonium molybdate stain. Flash chromatography was performed using Merck silica gel 60 with distilled solvents. ¹H-NMR spectra were performed on a Bruker Avance 300, Bruker Avance 400 or Bruker Avance 500 NMR spectrometer and are reported in ppm downfield from SiMe₄ (δ 0.0), relative to the signal of chloroform-d (δ = 7.26, singlet) or methanol-d₄ (δ = 3.31, quintet). Data reported as: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, b = broad; coupling constant(s) in Hz; integration. Proton-decoupled ¹³C-NMR spectra were recorded on Bruker Avance 300 (75 MHz) or Bruker Avance 400 (100MHz) or Bruker Avance 500 (125 MHz) spectrometer and are reported in ppm using solvent as an internal standard (CDCl₃ at 77.16 ppm or CD₂Cl₂ at 53.84 ppm). IR spectra were recorded using nujol mull technique for solids and recorded neat (or a concentrated solution of CHCl₃) for liquids on NaCl plates on a Shimadzu IRPrestige-21 FT-IR Spectrophotometer were reported in frequency of absorption (cm⁻¹). High-resolution mass spectral analysis (HRMS) was performed on Q-Tof Premier mass spectrometer (Waters Corporation).

2. Synthesis and characterization of compounds

Pentane-1,4-diol $(rac-6)^1$

To an oven-dried, vacuum cooled 250 mL round-bottom flask equipped with a stir bar was added levulinic acid 4 (2.0 mL, 2.29 g, 19.7 mmol, 1.0 equiv.) and anhydrous THF (20 mL) under N₂ atmosphere. The solution was cooled down to 0 °C before LiAlH₄ (39.5 mL, 2.0 M solution in THF, 79 mmol, 4.0 equiv.) was slowly added dropwise to give initial effervescence and then a white suspension. After addition, the mixture was allowed to warm to room temperature and allowed to stir at RT for an additional 1 h to give an almost clear solution. The mixture was cooled down to 0 °C and H₂O (3.1 mL) was slowly added dropwise, followed by addition of aqueous NaOH (3.1 mL, 15 wt%, 3.75 M) and finally H₂O (9.2 mL) to give a white suspension after stirring at room temperature for another 1 h. The suspension was filtered through a pad of celite, washed with ethyl acetate and dried over anhydrous MgSO₄ before being filtered and concentrated under reduced pressure. Purification using silica gel chromatography (eluent: ethyl acetate) afforded rac-6 as a colourless oil (1.81 g, 17.4 mmol, 88%). TLC (ethyl acetate): $R_f = 0.23$; ¹H NMR (400 MHz, CDCl₃) δ (ppm): 3.90-3.82 (m, 1H), 3.73-3.63 (m, 2H), 2.48 (bs, 1H), 2.36 (bs, 1H), 1.69-1.47 (m, 4H), 1.22 (d, J = 6.2 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ (ppm): 68.1, 63.1, 36.4, 29.3, 23.8; FTIR (neat, NaCl, cm⁻¹): 3306, 2932, 1454, 1373, 1134; HRMS (ESI) *m/z* Calcd for C₅H₁₃O₂ [M+H] ⁺: 105.0916; found: 105.0921.

¹ (*R*)-pentan-1,4-diol: J. C. Killen, L. C. Axford, S. E. Newberry, T. J. Simpson and C. L. Willis, *Org. Lett.*, 2012, **14**, 4194-4197.

(S)-4-hydroxypentyl acetate (8)

To a 25 mL round-bottom flask equipped with a stir bar was added pentane-1,4-diol *rac-6* (1.80 g, 17.3 mmol, 1.0 equiv.) and vinylacetate (5.3 mL, 4.91 g, 57.1 mmol, 3.3 equiv.) before Novozyme 435 (571 mg, 33 mg/mmol) was added. The suspension was allowed to stir at RT for 3.5 h before filtering through a pad of celite, washed with ethyl acetate and concentrated under reduced pressure to afford a crude mixture which is immediately used in the subsequent step without further purification.

Alternatively the crude mixture can be purified using silica gel chromatography (eluent: hexanes/ethyl acetate = 2:1) to afford **8** as a colourless oil. TLC (hexanes/ethyl acetate = 2:1): $R_f = 0.13$; $[\alpha]^{23}{}_D = +13.4$ (c = 1.49, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ (ppm): 4.09 (t, *J* = 6.6 Hz, 2H), 3.84 (sextet, *J* = 6.2 Hz, 1H), 2.05 (s, 3H), 1.78-1.67 (m, 3H), 1.54-1.48 (m, 2H), 1.21 (d, *J* = 6.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 171.4, 67.5, 64.6, 35.4, 25.0, 23.6, 21.0; FTIR (neat, NaCl, cm⁻¹): 3426, 2967, 1736, 1454, 1368, 1140; HRMS (ESI) *m/z* Calcd for C₇H₁₅O₃ [M+H] ⁺: 147.1021; found: 147.1017.

(S)-4-((*tert*-butyldiphenylsilyl)oxy)pentyl acetate (9)

To the crude mixture obtained above in a 50 mL round-bottom flask equipped with a stir bar was added anhydrous CH₂Cl₂ (18 mL) under N₂ atmosphere. Imidazole (882 mg, 13.0 mmol, 1.5 equiv. with respect to 50% conversion) was then added at RT and stirred to achieve complete dissolution before tert-butyl(chloro)diphenylsilane (2.7 mL, 2.85 g, 10.4 mmol, 1.2 equiv. with respect to 50% conversion) was added. The mixture was allowed to stir at room temperature for 2 h before saturated aqueous NH₄Cl (10 mL) was added and the layers were separated. The aqueous phase was extracted with CH₂Cl₂ (10 mL x 3) and the combined organic phase washed with brine (10 mL), dried over anhydrous MgSO₄ before being filtered and concentrated under reduced pressure. Purification using silica gel chromatography (eluent: hexanes/ethyl acetate = 50:1) to afford **9** as a colourless oil (2.66 g, 6.92 mmol, 40%) over 2 steps out the theoretical maximum of 50%), ee = >99%. The *ee* was determined on Chiralcel OJ column with hexane/2-propanol = 100:0, flow = 0.5 mL/min, wavelength = 220nm. Retention times: 10.1 min [(R)-enantiomer], 17.4 min [(S)-enantiomer]. TLC (hexanes/ethyl acetate = 2:1): $R_f = 0.69$; $[\alpha]_{D}^{21} = -12.9$ (c = 2.11, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.68-7.66 (m, 4H), 7.44-7.35 (m, 6H), 3.96 (t, J = 6.6 Hz, 2H), 3.88 (sextet, J = 5.9 Hz, 1H), 2.01 (s, 3H), 1.65-1.61 (m, 2H), 1.50-1.46 (m, 2H), 1.06 (d, J = 6.2Hz, 3H), 1.05 (s, 9H); 13 C NMR (125 MHz, CDCl₃) δ (ppm): 171.3, 136.0, 136.0, 134.9, 134.5, 129.7, 129.6, 127.7, 127.6, 69.2, 64.8, 35.7. 27.2, 24.4, 23.2, 21.1, 19.4; FTIR (neat,

NaCl, cm⁻¹): 3071, 2961, 1740, 1589, 1427, 1363, 1111;HRMS (ESI) m/z Calcd for C₂₃H₃₂NaO₃Si [M+Na] ⁺: 407.2018; found: 407.2023.

(S)-4-((*tert*-butyldiphenylsilyl)oxy)pentan-1-ol (10)²

To (S)-4-((tert-butyldiphenylsilyl)oxy)pentyl acetate 9 (2.60 g, 6.77 mmol, 1.0 equiv.) in a 25 mL round-bottom flask equipped with a stir bar was added MeOH (15 mL) and H₂O (3 mL) before solid K₂CO₃ (1.12 g, 8.12 mmol, 1.2 equiv.) was added in one portion. The mixture was allowed to stir at RT for 6 h before saturated aqueous NH₄Cl (10 mL) and H₂O (10 mL) were added, extracted with ethyl acetate (25 mL x 4), the combined organic phase washed with brine (10 mL), dried over anhydrous MgSO₄ before being filtered and concentrated under reduced pressure. Purification using silica gel chromatography (eluent: hexanes/ethyl acetate = 10:1 to 2:1) to afford **10** as a colourless oil (2.22 g, 6.50 mmol, 96%). TLC (hexanes/ ethyl acetate = 2:1): $R_f = 0.59$; $[\alpha]^{20}_D = -9.3$ (c = 0.45, MeOH), (Lit.²: $[\alpha]_D = -50.1$ $(c = 0.0051, MeOH); [\alpha]_{D}^{21} = -6.5 (c = 1.00, CHCl_3), (Lit. (enantiomer)^{3}: [\alpha]_{D}^{22} = +5.4 (c = 1.00, CHCl_3))$ 2.10, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ (ppm): 7.68-7.67 (m, 4H), 7.42-7.41 (m, 2H), 7.41-7.35 (m, 4H), 3.91 (sextet, J = 6.0 Hz, 1H), 3.55-3.53 (m, 2H), 1.60-1.56 (m, 3H), 1.52-1.50 (m, 2H), 1.07 (d, J = 6.2 Hz, 3H), 1.05 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 136.0, 136.0, 134.8, 134.5, 129.7, 129.7, 127.7, 127.6, 69.4, 63.2, 35.7, 28.4, 27.2, 23.0, 19.4; FTIR (neat, NaCl, cm⁻¹): 3361, 3070, 2932, 1589, 1427, 1367, 1111; HRMS (ESI) *m/z* Calcd for C₂₁H₃₁O₂Si [M+H] ⁺: 343.2093; found: 343.2104.

(S)-tert-butyl((5-iodopentan-2-yl)oxy)diphenylsilane (11)³

To a 250 mL round-bottom flask equipped with a stir bar was added PPh₃ (3.13 g, 11.9 mmol, 2.0 equiv.) and imidazole (1.62 g, 23.8 mmol, 4.0 equiv.) before THF/MeCN (6:5) (15 mL) was added and cooled down to 0 $^{\circ}$ C to give a brown solution. I₂ (3.33 g, 13.1 mmol, 2.2

³ (*R*)-*tert*-butyl((5-iodopentan-2-yl)oxy)diphenylsilane (enantiomer): T. Motozaki, K. Sawamura, A. Suzuki, K. Yoshida, T. Ueki, A. Ohara, R. Munakata, K.-i. Takao and K.-i.

² G. B. Jones, G. Hynd, J. M. Wright and A. Sharma, J. Org. Chem., 1999, 65, 263-265.

Tadano, Org. Lett., 2005, 7, 2265-2267.

equiv.) was then added in one portion to the stirring mixture at 0 °C and allowed to stirred at 0 °C for 1 h to give a brown suspension. (S)-4-((tert-butyldiphenylsilyl)oxy)pentan-1-ol 10 (2.04 g, 5.96 mmol, 1.0 equiv.) dissolved in THF (15 mL) was then added to the suspension was allowed to stir at room temperature for 3 h before saturated aqueous Na₂S₂O₃ (10 mL) was added and concentrated under reduced pressure. Ethyl acetate (30 mL) was added to dilute the mixture and the layers were separated, the aqueous phase extracted with EA (30 mL x 3), the combined organic phase washed with brine (10 mL), dried over anhydrous MgSO₄ before being filtered and concentrated under reduced pressure. Purification using silica gel chromatography (eluent: hexanes/ethyl acetate = 50:1) to afford **11** as a pale yellow oil (2.63 g, 5.82 mmol, 98%). TLC (hexanes/ethyl acetate = 20:1): $R_f = 0.76$; $[\alpha]_{D}^{20} = -20.2$ (c = 2.17, CHCl₃), (Lit.(enantiomer)³: $[\alpha]^{22}_{D} = +20.5$ (c = 1.93, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ (ppm): 7.68-7.66 (m, 4H), 7.43-7.35 (m, 6H), 3.87 (sextet, J = 5.9 Hz, 1H), 3.11-3.04 (m, 2H), 1.87-1.82 (m, 2H), 1.56-1.49 (m, 2H), 1.06 (d, J = 6.2 Hz, 3H), 1.05 (s, 9H);¹³C NMR (125 MHz, CDCl₃) δ (ppm): 136.0, 136.0, 134.8, 134.4, 129.7, 129.7, 127.7, 127.6, 68.7, 40.3, 29.5, 27.2, 23.4, 19.4, 7.4; FTIR (neat, NaCl, cm⁻¹): 3071, 2961, 1589, 1427, 1377, 1111; HRMS (ESI) *m/z* Calcd for C₂₁H₂₉NaOSiI [M+Na] ⁺: 475.0930; found: 475.0946.

5-((benzyloxy)methyl)furan-2-carbaldehyde (12)⁴

To an oven-dried, vacuum cooled 250 mL round-bottom flask equipped with a stir bar was added 5-(hydroxymethyl)furan-2-carbaldehyde **5** (6.11 g, 48.5 mmol, 1.0 equiv.) and anhydrous DMF (35 mL) under N₂ atmosphere before benzyl bromide (8.6 mL, 12.4 g, 72.7 mmol, 1.5 equiv.) and silver oxide (11.3 g, 48.5 mmol, 1.0 equiv.) were added. The round-bottom flask was covered with aluminium foil to exclude light and the suspension was allowed to stir at room temperature for 4 h. The suspension was diluted with ethyl acetate (30 mL) and filtered through a pad of celite, washed with ethyl acetate and concentrated under reduced pressure. Purification using silica gel chromatography (eluent: hexanes/ethyl acetate = 30:1) to afford **12** as a yellow oil (9.53 g, 44.1 mmol, 91%). TLC (hexanes/ethyl acetate = 2:1): $R_f = 0.50$; ¹H NMR (300 MHz, CDCl₃) δ (ppm): 9.63 (s, 1H), 7.36-7.30 (m, 5H), 7.21 (d, *J* = 3.5 Hz, 1H), 6.54 (d, *J* = 3.5 Hz, 1H), 4.61 (s, 2H), 4.58 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ (ppm): 177.9, 158.6, 152.8, 137.4, 128.7, 128.2, 128.1, 122.0, 111.4, 73.1, 64.3; FTIR (neat, NaCl, cm⁻¹): 3062, 3032, 2859, 1678, 1524, 1454, 1192; HRMS (ESI) *m/z* Calcd for C₁₃H₁₃O₃ [M+H]⁺: 217.0865; found: 217.0863.

⁴ L. Cottier, G. Descotes, L. Eymard and K. Rapp, *Synthesis*, 1995, 303-306.

tert-butyl 3-(5-((benzyloxy)methyl)furan-2-yl)-3-hydroxypropanoate (rac-13)

To an oven-dried, vacuum cooled 250 mL round-bottom flask equipped with a stir bar was added diisopropylamine (9.2 mL, 6.60 g, 65.4 mmol, 1.5 equiv.) and anhydrous THF (15 mL) under N₂ atmosphere before cooling down to 0 °C. n-Butyllithium (35.4 mL, 1.6 m in hexanes, 56.7 mmol, 1.3 equiv.) was slowly added dropwise at 0 °C and stirred for 30 min before cooling down to -78 °C. tert-Butyl acetate (8.8 mL, 7.6 g, 65.4 mmol, 1.5 equiv.) dissolved in anhydrous THF (20 mL) was then slowly added dropwise to the mixture at -78 °C and stirred for 30 min. 5-((benzyloxy)methyl)furan-2-carbaldehyde 12 (9.41 g, 43.6 mmol, 1.0 equiv.) dissolved in anhydrous THF (45 mL) was then slowly added dropwise to the mixture at -78 °C and allowed to stir at -78 °C for an additional 3 h. Saturated aqueous NH₄Cl (20 mL) was slowly added to quench the reaction and the mixture was concentrated under reduced pressure before diluting with ethyl acetate (50 mL) and H₂O (50 mL). The layers were separated, the aqueous phase extracted with ethyl acetate (50 mL x 4), the combined organic phase washed with brine (10 mL), dried over anhydrous MgSO₄ before being filtered and concentrated under reduced pressure. Purification using silica gel chromatography (eluent: hexanes/ethyl acetate = 6:1 to 2:1) to afford *rac-13* as a pale yellow oil (14.0 g, 42.3 mmol, 97%). TLC (hexanes/ethyl acetate = 2:1): $R_f = 0.45$; ¹H NMR (300 MHz, CDCl₃) δ (ppm): 7.35-7.30 (m, 5H), 6.27 (d, J = 3.2 Hz, 1H), 6.23 (d, J = 3.1 Hz, 1H), 5.10-5.04 (m, 1H), 4.54 (s, 2H), 4.45 (s, 2H), 3.38 (d, J = 5.0 Hz, 1H), 2.82 (dd, J = 16.5 Hz, 7.6 Hz, 1H), 2.75 (dd, J = 16.4 Hz, 4.8 Hz, 1H), 1.46 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ (ppm): 171.5, 155.4, 151.2, 138.0, 128.5, 128.0, 127.9, 110.3, 107.0, 81.8, 72.1, 64.6, 64.1, 40.9, 28.2; FTIR (neat, NaCl, cm⁻¹): 3443, 3060, 2980, 2929.9, 1726, 1454, 1151; HRMS (ESI) m/z Calcd for C₁₉H₂₅O₅ [M+H]⁺: 333.1702; found: 333.1691.

tert-butyl 3-(5-((benzyloxy)methyl)furan-2-yl)-3-oxopropanoate (14)

To *tert*-butyl 3-(5-((benzyloxy)methyl)furan-2-yl)-3-hydroxypropanoate (*rac*-13) (6.66 g, 20.1 mmol, 1.0 equiv.) in a 100 mL round-bottom flask equipped with a stir bar was added ethyl acetate (40 mL) and manganese dioxide (34.9 g, 401 mmol, 20 equiv.). The black

suspension was allowed to stir at room temperature for 12 h before being filtered through a pad of celite, washed with ethyl acetate and concentrated under reduced pressure. Purification using silica gel chromatography (eluent: hexanes/ethyl acetate = 10:1 to 2:1) to afford **14** (keto form : enol form = 93:7) as a pale yellow oil which solidified at -30 °C to give a pale yellow solid (5.69 g, 17.3 mmol, 86%). mp = 53-54 °C; TLC (hexanes/ethyl acetate = 2:1): $R_f = 0.65$; ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.36-7.30 (m, 5H), 7.21 (d, *J* = 3.6 Hz, 1H, keto), 6.85 (d, *J* = 3.4 Hz, 1H, enol), 6.49 (d, *J* = 3.2 Hz, 1H, keto), 6.41 (d, *J* = 3.4 Hz, 1H, enol), 5.56 (s, 1H, enol), 4.59 (s, 2H, keto), 4.56 (s, 2H, enol), 4.54 (s, 2H, keto), 4.49 (s, 2H, enol), 3.74 (s, 2H), 1.52 (s, 9H, enol), 1.44 (s, 9H, keto); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 181.6, 166.3, 157.1, 151.9, 137.4, 128.6, 128.1, 128.0, 119.0, 111.6, 82.2, 72.8, 64.2, 46.9, 28.0 (enol peaks not depicted); FTIR (Nujol, NaCl, cm⁻¹): 3117, 2953, 2922, 2852, 1732, 1667, 1454, 1138; HRMS (ESI) *m*/*z* Calcd for C₁₉H₂₃O₅ [M+H] ⁺: 331.1545; found: 333.1547.

(R)-tert-butyl 3-(5-((benzyloxy)methyl)furan-2-yl)-3-hydroxypropanoate (13)

To a 50 mL round-bottom flask equipped with a stir bar was added dichloro(p-cymene)ruthenium(II) dimer (263 mg, 0.43 mmol, 2.5 mol%), (1R,2R)-(+)-1,2-diphenylethylenediamine⁵ (376 mg, 1.03 mmol, 6 mol%) and MeCN (34 mL) before triethylamine (356 μ L, 260 mg, 2.57 mmol, 15 mol%) was added. The mixture was allowed to stir at room temperature for 1 h to give a dark orange solution before 5HCOOH 2NEt₃ azeotrope (8.6 mL) was added. The mixture was then transferred to another 50 mL round-bottom flask equipped with a stir bar containing *tert*-butyl 3-(5-((benzyloxy)methyl))furan-2-yl)-3-oxopropanoate **14** (5.66 g, 17.2 mmol, 1.0 equiv.) and allowed to stir at room temperature for 12 h. The mixture was concentrated under reduced pressure and purification using silica gel chromatography (eluent: hexanes/ethyl acetate = 4:1) to afford **13** as a pale yellow oil (5.66 g, 17.0 mmol, 99%, *ee* = 98%). The *ee* was determined on Chiralcel OB-H column with hexane/2-propanol = 90:10, flow = 1.0 mL/min, wavelength = 220 nm. Retention times: 10.8 min [(S)-enantiomer], 15.4 min [(R)-enantiomer]. [α]²²_D = +21.9 (c = 2.05, CHCl₃), see *rac*-**13** for the rest of the characterization data.

⁵ Lutz F. Tietze, Y. Zhou and E. Töpken, Eur. J. Org. Chem., 2000, 2247-2252.

tert-butyl (*R*)-2-(6-((benzyloxy)methyl)-6-hydroxy-3-oxo-3,6-dihydro-2*H*-pyran-2-yl) acetate (15)

To (*R*)-*tert*-butyl 3-(5-((benzyloxy)methyl)furan-2-yl)-3-hydroxypropanoate (**13**) (445 mg, 1.34 mmol, 1.0 equiv.) in a 25 mL round-bottom flask equipped with a stir bar was added CH_2Cl_2 (4.5 mL) and then *meta*-chloroperoxybenzoic acid (329 mg, ~70 wt. %, 1.34 mmol, 1.0 equiv.) in one portion. The mixture was allowed to stir at room temperature for 15 h to give a white suspension before saturated aqueous NaHCO₃ (5 mL) was added. The layers were separated, the aqueous phase extracted with CH_2Cl_2 (5 mL x 3), the combined organic phase washed with water (5 mL), brine (5 mL), dried over anhydrous MgSO₄ before being filtered and concentrated under reduced pressure to afford crude **15** as a mixture of isomers (major:minor = 91:9) which is immediately used in the subsequent step without further purification.

Alternatively, the crude mixture can be purified using silica gel chromatography (eluent: hexanes/ethyl acetate = 10:1 to 1:1) to afford **15** as a mixture of isomers (major:minor = 91:9) as a pale yellow oil. TLC (hexanes/ethyl acetate = 2:1): $R_f = 0.38$; $[\alpha]^{22}_D = +41.0$ (c = 3.44, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.36-7.32 (m, 5H), 6.89 (d, J = 10.4 Hz, 1H, minor), 6.81 (d, J = 10.3 Hz, 1H, major), 6.19 (d, J = 10.4 Hz, 1H, minor), 6.13 (d, J = 10.3 Hz, 1H, major), 4.94 (dd, J = 6.9 Hz, 4.4 Hz, 1H), 4.71 (d, J = 12.0 Hz, 1H), 4.62 (d, J = 12.0 Hz, 1H), 4.43 (bs, 1H, minor), 4.01 (bs, 1H, major), 3.62 (d, J = 10.3 Hz, 1H), 3.57 (d, J = 10.3 Hz, 1H), 2.88 (dd, J = 16.5 Hz, 4.4 Hz, 1H), 2.71 (dd, J = 16.5 Hz, 6.9 Hz, 1H), 1.44 (s, 9H, minor), 1.42 (s, 9H, major); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 195.4, 194.9 (minor), 169.8, 147.5 (minor), 145.2, 137.4, 128.7, 128.2, 128.1, 128.0, 127.9 (minor), 127.9 (minor), 71.8, 39.3 (minor), 36.7, 28.2; FTIR (neat, NaCl, cm⁻¹): 3401, 3067, 3030, 2978, 2932, 2868, 1730, 1694, 1632; HRMS (ESI) m/z Calcd for C₁₉H₂₅O₆ [M+H] ⁺: 349.1651; found: 349.1643.

tert-butyl 2-((2*R*,6*R*)-6-((benzyloxy)methyl)-3-oxo-3,6-dihydro-2*H*-pyran-2-yl)acetate (16)

To the crude mixture of **15** obtained above in a 25 mL round-bottom flask equipped with a stir bar was added anhydrous CH_2Cl_2 (6.7 mL) under N₂ atmosphere. Triethylsilane (195 μ L, 142 mg, 1.34 mmol, 1.0 equiv.) was added and cooled down to -20 °C before boron trifluoride diethyl etherate (165 μ L, 190 mg, 1.34 mmol, 1.0 equiv.) was slowly added dropwise and stirred at -20 °C for another 2 h. The reaction was quenched with saturated aqueous NH₄Cl (5 mL) and H₂O (2 mL) before warming to room temperature. The layers

were separated, the aqueous phase extracted with CH₂Cl₂ (5 mL x 4), the combined organic phase washed with water (5 mL), brine (5 mL), dried over anhydrous MgSO₄ before being filtered and concentrated under reduced pressure. Purification using silica gel chromatography (eluent: hexanes/ethyl acetate = 10:1 to 2:1) to afford **16** (271 mg, 0.82 mmol, 61% over 2 steps) as a yellow oil. TLC (hexanes/ethyl acetate = 2:1): $R_f = 0.50$; $[\alpha]^{22}_{D} = +70.4$ (c = 2.21, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ (ppm): 7.36-7.30 (m, 5H), 7.07 (dd, J = 10.4 Hz, 1.5 Hz, 1H), 6.18 (dd, J = 10.4 Hz, 2.5 Hz, 1H), 4.64-4.56 (m, 3H), 4.45 (ddd, J = 7.1 Hz, 4.6 Hz, 2.2 Hz, 1H), 3.71 (dd, J = 10.0 Hz, 5.6 Hz, 1H), 3.58 (dd, J = 10.0 Hz, 5.9 Hz, 1H), 2.93 (dd, J = 16.5 Hz, 4.5 Hz, 1H), 2.62 (dd, J = 16.4 Hz, 7.2 Hz, 1H), 1.46 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 195.1, 170.0, 148.9, 137.8, 128.6, 128.0, 127.9, 127.4, 81.1, 77.7, 74.0, 73.8, 71.2, 36.8, 28.2; FTIR (neat, NaCl, cm⁻¹): 3057, 3034, 2982, 2934, 2874, 1728, 1628; HRMS (ESI) *m/z* Calcd for C₁₉H₂₅O₅ [M+H] ⁺: 333.1702; found: 333.1705.

tert-butyl 2-((2*R*,3*S*,6*R*)-6-((benzyloxy)methyl)-3-hydroxy-3,6-dihydro-2*H*-pyran-2-yl) acetate (17)

tert-butyl 2-((2*R*,3*S*,6*R*)-6-((benzyloxy)methyl)-3-hydroxytetrahydro-2*H*-pyran-2-yl) acetate (18)

To (*R*)-*tert*-butyl 3-(5-((benzyloxy)methyl)furan-2-yl)-3-hydroxypropanoate (**13**) (5.66 g, 17.1 mmol, 1.0 equiv.) in a 100 mL round-bottom flask equipped with a stir bar was added CH_2Cl_2 (40 mL) and then *meta*-chloroperoxybenzoic acid (4.19 g, ~70 wt. %, 17.1 mmol, 1.0 equiv.) in one portion. The mixture was allowed to stir at room temperature for 20 h to give a white suspension before saturated aqueous NaHCO₃ (80 mL) was added. The layers were separated, the aqueous phase extracted with CH_2Cl_2 (80 mL x 3), the combined organic phase washed with water (50 mL), brine (10 mL), dried over anhydrous MgSO₄ before being filtered and concentrated under reduced pressure to afford crude **15** as a mixture of isomers (major:minor = 91:9) which is immediately used in the subsequent step without further purification.

To the crude mixture of **15** obtained above in a 100 mL round-bottom flask equipped with a stir bar was added anhydrous CH_2Cl_2 (85 mL) under N_2 atmosphere. Triethylsilane (24.8 mL,

18.1 g, 170 mmol, 10 equiv.) was added and cooled down to -40 °C before boron trifluoride diethyl etherate (12.6 mL, 14.5 g, 102 mmol, 6.0 equiv.) was slowly added *via* a syringe pump over 30 min and stirred at -40 °C for another 15 h. The reaction was quenched with saturated aqueous NH₄Cl (50 mL) and H₂O (20 mL) before warming to room temperature. The layers were separated, the aqueous phase extracted with CH₂Cl₂ (50 mL x 4), the combined organic phase washed with water (50 mL), brine (10 mL), dried over anhydrous MgSO₄ before being filtered and concentrated under reduced pressure. Purification using silica gel chromatography (eluent: hexanes/ethyl acetate = 10:1 to 2:1) to afford **17** (343 mg, 1.03 mmol, 6% over 2 steps) and **18** (3.96 g, 11.8 mmol, 69% over 2 steps) separately as pale yellow oils. Total yield: 75% over 2 steps.

17: TLC (hexanes/ethyl acetate = 2:1): $R_f = 0.30$; $[\alpha]^{22}{}_D = +70.1$ (c = 0.72, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ (ppm): 7.34-7.30 (m, 5H), 5.86 (d, *J* = 10.5 Hz, 1H), 5.80 (d, *J* = 10.2 Hz, 1H), 4.57 (s, 2H), 4.34 (m, 1H), 4.05 (m, 1H), 3.71-3.64 (m, 1H), 3.51 (dd, *J* = 10.2 Hz, 6.0 Hz, 1H), 3.46 (dd, *J* = 10.1 Hz, 5.1 Hz, 1H), 2.75 (dd, *J* = 15.5 Hz, 5.7 Hz, 1H), 2.59 (dd, *J* = 15.5 Hz, 6.8 Hz, 1H), 2.37 (bs, 1H), 1.46 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ (ppm): 171.6, 138.3, 130.3, 128.8, 128.5, 127.9, 127.8, 81.3, 76.1, 74.7, 73.5, 72.4, 68.2, 40.4, 28.2; FTIR (neat, NaCl, cm⁻¹): 3424, 3060, 2978, 2930, 2868, 1732, 1620; HRMS (ESI) *m/z* Calcd for C₁₉H₂₇O₅ [M+H]⁺: 335.1858; found: 335.1854.

18: TLC (hexanes/ethyl acetate = 2:1): $R_f = 0.23$; $[\alpha]^{23}{}_D = +24.1$ (c = 2.37, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ (ppm): 7.33-1.28 (m, 5H), 4.57 (d, *J* = 12.2 Hz, 1H), 4.53 (d, *J* = 12.2 Hz, 1H), 3.58-3.57 (m, 1H), 3.58-3.57 (m, 1H), 3.53-3.51 (m, 1H), 3.50-3.46 (m, 1H), 3.41 (dd, *J* = 10.1 Hz, 4.4 Hz, 1H), 3.36 (m, 1H), 2.72 (dd, *J* = 15.2 Hz, 5.5 Hz, 1H), 2.50 (dd, *J* = 15.3 Hz, 6.5 Hz, 1H), 2.23 (bs, 1H), 2.14-2.12 (m, 1H), 1.76-1.73 (m, 1H), 1.47 (m, 11H); ¹³C NMR (75 MHz, CDCl₃) δ (ppm): 171.8, 138.5, 128.5, 127.8, 127.7, 81.1, 78.9, 77.0, 73.5, 72.9, 71.0, 40.5, 32.8, 28.2, 28.0; FTIR (neat, NaCl, cm⁻¹): 3443, 3060, 2978, 2934, 2868, 1732, 1603; HRMS (ESI) *m*/*z* Calcd for C₁₉H₂₉O₅ [M+H] ⁺: 337.2015; found: 337.2011.

tert-butyl 2-((2*R*,3*S*,6*R*)-6-((benzyloxy)methyl)-3-((*tert*-butyldimethylsilyl)oxy)-3,6-dihydro-2*H*-pyran-2-yl)acetate (19)

tert-butyl 2-((2*R*,3*S*,6*R*)-6-((benzyloxy)methyl)-3-((*tert*-butyldimethylsilyl)oxy) tetrahydro-2*H*-pyran-2-yl)acetate (20)

To a mixture of *tert*-butyl 2-((2R,3S,6R)-6-((benzyloxy)methyl)-3-hydroxy-3,6-dihydro-2H-(343 mg, 1.03 mmol) and *tert*-butyl pyran-2-yl)acetate 17 2-((2R,3S,6R)-6-((benzyloxy)methyl)-3-hydroxytetrahydro-2H-pyran-2-yl)acetate 18 (3.96 g, 11.8 mmol) in a 50 mL round-bottom flask equipped with a stir bar was added anhydrous CH₂Cl₂ (26 mL) under N₂ atmosphere. Imidazole (2.62 g, 38.5 mmol, 3.0 equiv. w.r.t combined amount of both reactants) was then added at RT and stirred to achieve complete dissolution before tertbutyl(chloro)dimethylsilane (2.90 g, 19.2 mmol, 1.5 equiv. w.r.t combined amount of both reactants) was added. The mixture was allowed to stir at room temperature for 15 h before saturated aqueous NH₄Cl (10 mL) and H₂O (5 mL) was added and the layers were separated. The aqueous phase was extracted with CH₂Cl₂ (10 mL x 3) and the combined organic phase washed with H₂O (5 mL) and brine (5 mL), dried over anhydrous MgSO₄ before being filtered and concentrated under reduced pressure. Purification using silica gel chromatography (eluent: hexanes/ethyl acetate = 40:1 to 20:1) to afford **19** and **20** as an inseparable mixture (colourless oil) (5.14 g, 11.4 mmol, 89%). TLC (hexanes/ethyl acetate = 10:1): $R_f = 0.39$; $[\alpha]_D^{23} = +48.5$ (c = 1.35, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.33-7.27 (m, 5H), 5.76 (m, 2H, 19), 4.58-4.52 (m, 2H), 4.35 (m, 1H, 19), 4.08-4.05 (m, 1H, 19), 3.75 (m, 1H, 19), 3.59-3.55 (m, 2H), 3.50-3.47 (m, 1H), 3.43-3.32 (m, 2H), 2.78-2.74 (m, 1H), 2.38-2.33 (m, 1H, **19**), 2.24 (dd, J = 14.8 Hz, 9.7 Hz, 1H), 2.01 (m, 1H), 1.76-1.73 (m, 1H), 1.44 (m, 11H), 0.06 (s, 6H); 13 C NMR (100 MHz, CDCl₃) δ (ppm): 171.3, 138.6, 128.4, 127.8, 127.6, 80.4, 79.8, 76.8, 73.4, 72.9, 70.9, 39.5, 33.2, 28.3, 28.1, 25.9, 18.1, -3.9, -4.6; FTIR (neat, NaCl, cm⁻¹): 3061, 3030, 2953, 2930, 2857, 1732; HRMS (ESI) *m/z* Calcd for C₂₅H₄₃O₅Si [M+H] ⁺: 451.2880; found: 451.2887.

tert-butyl 2-((2*R*,3*S*,6*R*)-3-((*tert*-butyldimethylsilyl)oxy)-6-(hydroxymethyl)tetrahydro-2*H*-pyran-2-yl)acetate (21)

To a mixture of *tert*-butyl 2-((2R,3S,6R)-6-((benzyloxy)methyl)-3-((*tert*-butyldimethyl silyl)oxy)-3,6-dihydro-2H-pyran-2-yl)acetate (19) and *tert*-butyl 2 - ((2R, 3S, 6R) - 6 -((benzyloxy)methyl)-3-((tert-butyldimethylsilyl)oxy)tetrahydro-2H-pyran-2-yl)acetate (20)(5.00 g, 11.1 mmol, 1.0 equiv.) in a 100 mL round-bottom flask equipped with a stir bar was added MeOH (30 mL) and palladium on carbon (1.18 g, 10 wt. %, 1.11 mmol, 10 mol%). The round-bottom flask was evacuated and backfilled with H₂ (balloon) thrice and allowed to stir at RT for 21 h, filtered through a short plug of silica gel, washed with ethyl acetate and concentrated afford *tert*-butyl 2-((2R,3S,6R)-3-((tert-butyldimethylsilyl)oxy)-6to (hydroxymethyl)tetrahydro-2*H*-pyran-2-yl)acetate **21** as a colourless oil (3.84 g, 10.7 mmol, 96%). TLC (hexanes/ethyl acetate = 2:1): $R_f = 0.43$; $[\alpha]_D^{23} = +42.8$ (c = 1.90, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ (ppm): 3.58-3.54 (m, 2H), 3.48-3.43 (m, 2H), 3.32 (td, J = 9.6Hz, 4.2 Hz, 1H), 2.77 (dd, J = 14.8 Hz, 2.8 Hz, 1H), 2.20 (dd, J = 14.8 Hz, 9.9 Hz, 1H), 2.02-1.99 (m, 1H), 1.70 (bs, 1H), 1.61-1.48 (m, 3H), 1.45 (s, 9H), 1.42-1.41 (m, 1H), 0.87 (s, 9H), 0.06 (s, 3H), 0.05 (s, 3H); 13 C NMR (100 MHz, CDCl₃) δ (ppm): 171.2, 80.6, 79.6, 77.8, 70.9, 65.7, 39.6, 32.9, 28.3, 26.8, 25.9, 18.0, -3.9, -4.6; FTIR (neat, NaCl, cm⁻¹): 3466, 2953, 2930, 2857, 1728; HRMS (ESI) *m/z* Calcd for C₁₈H₃₇O₅Si [M+H] ⁺: 361.2410; found: 361.2417.

tert-butyl 2-((2*R*,3*S*,6*R*)-3-((*tert*-butyldimethylsilyl)oxy)-6-formyltetrahydro-2*H*-pyran-2-yl)acetate (22)

To an oven-dried, vacuum cooled 250 mL round-bottom flask equipped with a stir bar was added anhydrous DMSO (2.2 mL, 2.40 g, 30.8 mmol, 3.0 equiv.) and anhydrous CH₂Cl₂ (20 mL) under N₂ atmosphere before cooling down to -78 °C. Oxalyl chloride (1.3 mL, 1.95 g, 15.4 mmol, 1.5 equiv.) was slowly added dropwise at -78 °C and stirred for 15 min. tert-butyl 2-((2R,3S,6R)-3-((*tert*-butyldimethylsilyl)oxy)-6-(hydroxymethyl)tetrahydro-2*H*-pyran-2-yl) acetate 21 (3.69 g, 10.3 mmol, 1.0 equiv.) dissolved in anhydrous CH₂Cl₂ (50 mL) was then slowly added dropwise to the mixture at -78 °C and stirred for 1 h. Triethylamine (8.5 mL, 6.21 g, 61.5 mmol, 6.0 equiv.) was then added in portion to the mixture at -78 °C and allowed to stir at -78 °C for an additional 15 min before warming to room temperature and stirred for another 30 min. Saturated aqueous NH₄Cl (20 mL) and H₂O (5 mL) was added to the mixture and the layers were separated, the aqueous phase extracted with CH₂Cl₂ (30 mL x 3), the combined organic phase washed with H₂O (10 mL), brine (10 mL), dried over anhydrous MgSO₄ before being filtered and concentrated under reduced pressure. Purification using silica gel chromatography (eluent: hexanes/ethyl acetate = 30:1) to afford 22 as a pale yellow oil (3.12 g, 8.71 mmol, 85%). The aldehyde product is not very stable and should be stored a low temperature or used immediately in the subsequent step. TLC (hexanes/ethyl acetate = 2:1): $R_f = 0.55$; $[\alpha]_{D}^{22} = +84.4$ (c = 1.72, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ (ppm): 9.59 (s, 1H), 3.78 (dd, J = 11.5 Hz, 2.4 Hz, 1H), 3.64 (td, J = 9.4 Hz, 2.7 Hz, 1H), 3.36 (td, J = 9.6 Hz, 4.2 Hz, 1H), 2.79 (dd, J = 15.1 Hz, 2.8 Hz, 1H), 2.30 (dd, J = 15.2 Hz, 9.6 Hz, 1H), 2.10-2.07 (m, 1H), 1.95-1.92 (m, 1H), 1.57-.50 (m, 2H), 1.46 (s, 9H), 0.87 (s, 9H), 0.06 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ (ppm): 201.5, 171.0, 81.1, 80.8, 79.8, 70.2, 39.2, 32.7, 28.3, 26.0, 25.9, 18.0, -3.9, -4.6; FTIR (neat, NaCl, cm⁻¹): 2955, 2930, 2859, 1738, 1732, 1368; HRMS (ESI) m/z Calcd for C₁₈H₃₅O₅Si [M+H]⁺: 359.2254; found: 359.2247.

tert-butyl 2-((2*R*,3*S*,6*R*)-3-((*tert*-butyldimethylsilyl)oxy)-6-((*E*)-2-iodovinyl)tetrahydro-2*H*-pyran-2-yl)acetate (23)

tert-butyl 2-((2*R*,3*S*,6*R*)-3-((*tert*-butyldimethylsilyl)oxy)-6-((*Z*)-2-iodovinyl)tetrahydro-2*H*-pyran-2-yl)acetate (23-*Z*)

To an oven-dried, vacuum-cooled 100 mL round-bottom flask equipped with a stir bar was added anhydrous chromium(II) chloride (5.39 g, 43.8 mmol, 7.0 equiv.) under Ar atmosphere and cooled down to 0 °C before anhydrous THF (26 mL) was slowly added at 0 °C to give a grey suspension. The mixture was allowed to warm to room temperature and a mixture containing tert-butyl 2-((2R,3S,6R)-3-((tert-butyldimethylsilyl)oxy)-6-formyltetrahydro-2Hpyran-2-yl)acetate (22) (2.24 g, 6.26 mmol, 1.0 equiv.) and iodoform (4.93 g, 12.5 mmol, 2.0 equiv.) dissolved in anhydrous THF (13 mL) was slowly added dropwise at room temperature to the stirring suspension and allowed to stir for another 1 h to give a brown solution. H₂O (50 mL) and ethyl acetate (30 mL) was added and the layers were separated. The aqueous phase was extracted with ethyl acetate (50 mL x 3) and the combined organic phase washed with saturated aqueous NaHCO₃ (50 mL), saturated aqueous Na₂S₂O₃ (50 mL) and brine (30 mL). The organic phase was dried over anhydrous MgSO₄, filtered through a pad of silica gel and concentrated under reduced pressure. Purification using silica gel chromatography in the dark (eluent: hexanes/ethyl acetate = 100:1) to afford 23 as the major product (colourless oil) (1.99 g, 4.13 mmol, 66%) and 23-Z as the minor product (colourless oil) (481 mg, 1.00 mmol, 16%). The products were stored under Ar, in the absence of light at -20 °C and 23 was used in the subsequent step within a few days.

23: TLC (hexanes/ethyl acetate = 10:1): $R_f = 0.54$; $[\alpha]_D^{22} = +47.4$ (c = 1.13, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ (ppm): 6.50 (dd, J = 14.5 Hz, 4.6 Hz, 1H), 6.31 (dd, J = 14.5 Hz, 1.5 Hz, 1H), 3.83-3.80 (m, 1H), 3.57 (td, J = 9.3 Hz, 2.9 Hz, 1H), 3.33 (td, J = 9.5 Hz, 4.4 Hz, 1H), 2.73 (dd, J = 14.8 Hz, 3.0 Hz, 1H), 2.23 (dd, J = 14.8 Hz, 9.7 Hz, 1H), 2.02-1.98 (m, 1H), 1.78-.174 (m, 1H), 1.44 (m, 11H), 0.87 (s, 9H) 0.05 (s, 3H), 0.05 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 171.2, 145.6, 80.6, 79.8, 78.9, 77.3, 70.5, 39.5, 33.2, 30.8, 28.3, 25.9, 18.1, -3.9, -4.6; FTIR (neat, NaCl, cm⁻¹): 3053, 2953, 2930, 2857, 1730, 1612; HRMS (ESI) *m/z* Calcd for C₁₉H₃₆IO₄Si [M+H] ⁺: 483.1428; found: 483.1425. *rac-23*: mp = 53-54 °C.

23-Z: mp = 71-72 °C; TLC (hexanes/ethyl acetate = 10:1): $R_f = 0.46$; $[\alpha]^{22}{}_D = +7.8$ (c = 1.32, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ (ppm): 6.27-6.19 (m, 2H), 4.08 (dd, J = 8.8 Hz, 8.3 Hz, 1H), 3.60 (td, J = 9.3 Hz, 2.5 Hz, 1H), 3.35 (td, J = 9.7 Hz, 4.5 Hz, 1H), 2.76-2.71 (m, 1H), 2.19 (dd, J = 14.8 Hz, 9.5 Hz, 1H), 2.04-2.00 (m, 1H), 1.84-1.80 (m, 1H), 1.64-1.54

(m, 1H), 1.48-1.38 (m, 10H), 0.87 (s, 9H), 0.05 (s, 3H), 0.04 (s,3H); ¹³C NMR (100 MHz, CD₂Cl₂) δ (ppm): 171.2, 142.0, 81.9, 80.7, 80.5, 80.0, 70.6, 39.8, 33.5, 29.9, 28.3, 26.0, 18.2, -3.9, -4.6; FTIR (neat, NaCl, cm⁻¹): 3053, 2953, 2930, 2857, 1730, 1620; HRMS (ESI) *m/z* Calcd for C₁₉H₃₆IO₄Si [M+H]⁺: 483.1428; found: 483.1429. *rac*-23-Z: mp = 71-72 °C.

tert-butyl 2-((2*R*,3*S*,6*R*)-3-((*tert*-butyldimethylsilyl)oxy)-6-((*S*,*E*)-6-((tert-butyldiphenyl silyl)oxy)hept-1-en-1-yl)tetrahydro-2*H*-pyran-2-yl)acetate (24)

To a 4 mL sample vial wrapped in aluminium foil containing tert-butyl 2-((2R,3S,6R)-3-((tert-butyldimethylsilyl)oxy)-6-((E)-2-iodovinyl)tetrahydro-2H-pyran-2-yl)acetate 23 (300)mg, 0.62 mmol, 1.0 equiv.) and (S)-tert-butyl((5-iodopentan-2-yl)oxy)diphenylsilane 11 (844 mg, 1.87 mmol, 3.0 equiv.) was added 2% TPGS-750-M solution (1.2 mL) under Ar. Tetramethylethylenediamine (465 μ L, 361 mg, 3.11 mmol, 5.0 equiv.) was then added with stirring. PdCl₂Amphos₂ (22 mg, 0.031 mmol, 5 mol%) and activated zinc dust⁶ (244 mg, 3.73, 6.0 equiv.) were then added together, and the sample vial was sealed under Ar. The mixture was allowed to stir vigorously in the dark, in a pre-heated oil bath at 40 °C for 24 h and allowed to cool to room temperature. The mixture was filtered through a short pad of silica gel (washed with ethyl acetate) and concentrated under reduced pressure. Purification using silica gel chromatography (eluent: hexanes to hexanes/ethyl acetate = 100:1) followed by Preparative Thin Layer Chromatography (eluent: hexanes/ethyl acetate = 100:1) afforded 24 as a pale yellow oil (286 mg, 0.42 mmol, 68%) as a mixture of E/Z isomers in the ratio >95/5. TLC (hexanes/ethyl acetate = 20:1): $R_f = 0.53$; $[\alpha]_{D}^{22} = +18.5$ (c = 1.19, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.67 (dd, J = 7.9 Hz, 1.4 Hz, 4H), 7.43-7.34 (m, 6H), 5.57 (dt, J = 15.5 Hz, 7.2 Hz, 1H), 5.36 (dd, J = 15.5 Hz, 5.5 Hz, 1H), 3.84-3.75 (m, 2H), 3.58 (td, J = 9.3 Hz, 2.9 Hz, 1H), 3.33 (td, J = 9.6 Hz, 4.3 Hz, 1H), 2.74 (dd, J = 14.8 Hz, 3.0 Hz, 1H), 2.23 (dd, J = 14.8 Hz, 9.7 Hz, 1H), 2.01-1.97 (m, 1H), 1.91-1.86 (m, 2H), 1.71-1.68 (m, 1H), 1.43 (s, 9H), 1.47-1.33 (m, 6H), 1.04 (s, 9H), 1.02 (d, J = 6.2 Hz, 3H), 0.88 (s, 9H), 0.06 (s, 3H), 0.05 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 171.5, 136.0, 136.0, 135.1, 134.7, 131.8, 130.3, 129.6, 129.5, 127.6, 127.5, 80.3, 79.8, 77.7, 70.9, 69.6, 39.6, 39.1, 33.6, 32.5, 31.5, 28.3, 27.2, 25.9, 24.8, 23.3, 19.4, 18.1, -3.9, -4.6; FTIR (neat, NaCl, cm⁻¹): 3071,

⁶ Activated zinc dust was prepared using a modified procedure from: S. Yamamura, M. Toda and Y. Hirata, *Org. Synth.*, 1973, **53**, 86. Zinc dust was stirred in 1M HCl for 30 min, quickly washed with H_2O , filtered and washed with ethanol, acetone, diethyl ether sequentially, dried between filter paper and used immediately.

2930, 2867, 1960, 1890, 1825, 1730, 1589; HRMS (ESI) m/z Calcd for C₄₀H₆₄O₅Si₂Na [M+Na]⁺: 703.4190; found: 703.4187.

tert-butyl 2-((2*R*,3*S*,6*R*)-6-((*S*,*E*)-6-((*tert*-butyldiphenylsilyl)oxy)hept-1-en-1-yl)-3hydroxytetrahydro-2*H*-pyran-2-yl)acetate (25)

To *tert*-butyl 2-((2R,3S,6R)-3-((*tert*-butyldimethylsilyl)oxy)-6-((*S*,*E*)-6-((*tert*-butyldiphenyl silyl)oxy)hept-1-en-1-yl)tetrahydro-2H-pyran-2-yl)acetate 24 (139 mg, 0.205 mmol, 1.0 equiv.) in a 4 mL sample vial equipped with a stir bar, was added anhydrous THF (2.0 mL) before tetrabutylammonium fluoride (0.41 mL, 1.0 M solution in THF, 0.41 mmol, 2.0 equiv.) was added under N₂. The mixture was allowed to stir at RT for 4 h before saturated aqueous NH₄Cl (5 mL) was added to the mixture and the layers were separated, the aqueous phase extracted with EA (10 mL x 3), the combined organic phase washed with, brine (5 mL), dried over anhydrous MgSO₄ before being filtered and concentrated under reduced pressure. Purification using silica gel chromatography (eluent: hexanes/ethyl acetate = 5:1) to afford 25 as a pale yellow oil (99.7 mg, 0.176 mmol, 86%). TLC (hexanes/ethyl acetate = 2:1): $R_f = 0.48$; $[\alpha]_{D}^{22} = +2.5$ (c = 0.85, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.68-7.66 (m, 4H), 7.41-7.34 (m, 6H), 5.59 (dt, J = 15.5 Hz, 7.2 Hz, 1H), 5.37 (dd, J = 15.5 Hz, 5.9 Hz, 1H), 3.85-3.75 (m, 2H), 3.53 (dt, J = 9.0 Hz, 6.0 Hz, 1H), 3.39-3.33 (m, 1H), 2.71 (dd, J = 15.1 Hz, 5.6 Hz, 1H), 2.49 (dd, J = 15.1 Hz, 6.4 Hz, 1H), 2.18 (bs, 1H), 2.16-2.11 (m, 1H), 1.92-1.87 (m, 2H), 1.73-1.70 (m, 1H), 1.45 (s, 9H), 1.45-1.32 (m, 6H), 1.04 (s, 9H), 1.03 (d, J = 6.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 171.9, 136.0, 136.0, 135.1, 134.7, 132.3, 130.1, 129.6, 129.5, 127.6, 127.5, 81.1, 78.9, 78.0, 71.0, 69.6, 40.5, 39.1, 33.1, 32.4, 31.5, 28.2, 27.2, 24.8, 23.3, 19.4; FTIR (neat, NaCl, cm⁻¹): 3418, 3071, 2932, 2857, 1960, 1892, 1823, 1730, 1589; HRMS (ESI) m/z Calcd for C₃₄H₅₀O₅SiNa [M+Na]⁺: 589.3325; found: 589.3319.

tert-butyl 2-((2*R*,3*S*,6*R*)-6-((*S*,*E*)-6-((*tert*-butyldiphenylsilyl)oxy)hept-1-en-1-yl)-3-(methoxymethoxy)tetrahydro-2*H*-pyran-2-yl)acetate (26)

2-((2R,3S,6R)-6-((S,E)-6-((tert-butyldiphenylsilyl)))))То *tert*-butyl hydroxytetrahydro-2H-pyran-2-yl)acetate 25 (96.1 mg, 0.17 mmol, 1.0 equiv.) in a 4 mL sample vial equipped with a stir bar was added 1,2-dichloroethane (1.7 mL) before N,Ndiisopropylethylamine (296 µL, 219 mg, 1.7 mmol, 10 equiv.) was added followed by chloromethyl methyl ether (65 μ L, 68.3 mg, 0.85 mmol, 5.0 equiv.). The mixture was allowed to stir at 50 °C for 4 h before being concentrated under reduced pressure. Purification using silica gel chromatography (eluent: hexanes/ethyl acetate = 10:1) to afford **26** as a pale yellow oil (99.6 mg, 0.163 mmol, 96%). TLC (hexanes/ethyl acetate = 2:1): $R_f = 0.68$; $[\alpha]_D^{22}$ = +15.8 (c = 0.62, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.67 (dd, J = 7.9 Hz, 1.4) Hz, 4H), 7.41-7.34 (m, 6H), 5.58 (dt, J = 15.5 Hz, 7.2 Hz, 1H), 5.36 (dd, J = 15.5 Hz, 5.7 Hz, 1H), 4.71 (d, J = 6.8 Hz, 1H), 4.59 (d, J = 6.8 Hz, 1H), 3.84-3.77 (m, 2H), 3.68 (td, J = 8.8Hz, 4.4 Hz, 1H), 3.36 (s, 3H), 3.29 (td, *J* = 9.8 Hz, 4.3 Hz, 1H), 2.71 (dd, *J* = 14.9 Hz, 4.2 Hz, 1H), 2.36 (dd, J = 14.9 Hz, 8.2 Hz, 1H), 2.24-2.20 (m, 1H), 1.92-1.86 (m, 2H), 1.74-1.70 (m, 1H), 1.48-1.32 (m, 6H), 1.44 (s, 9H), 1.04 (s, 9H), 1.03 (d, J = 7.7 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 171.0, 136.0, 136.0, 135.1, 134.7, 132.2, 130.2, 129.6, 129.5, 127.6, 127.5, 95.3, 80.4, 77.9, 77.8, 75.6, 69.6, 55.7, 39.9, 39.1, 32.4, 31.2, 30.2, 28.3, 27.2, 24.8, 23.3, 19.4; FTIR (neat, NaCl, cm⁻¹): 3049, 2932, 2857, 1960, 1900, 1827, 1726, 1589; HRMS (ESI) m/z Calcd for C₃₆H₅₅O₆Si [M+H]⁺: 611.3768; found: 611.3776.

2-((2*R*,3*S*,6*R*)-6-((*S*,*E*)-6-hydroxyhept-1-en-1-yl)-3-(methoxymethoxy)tetrahydro-2*H*-pyran-2-yl)acetic acid (27)⁷

2-((2R,3S,6R)-6-((S,E)-6-((tert-butyldiphenylsilyl)oxy)hept-1-en-1-yl)-3-То *tert*-butyl (methoxymethoxy)tetrahydro-2H-pyran-2-yl)acetate 26 (89.7 mg, 0.147 mmol, 1.0 equiv.) in a 4 mL vial equipped with a stir bar was added ethanol (1.5 mL) before aqueous NaOH (1.5 mL, 5.0 M, 7.5 mmol, 50 equiv.) was added and allowed to stir at 100 °C for 3 days. The mixture was acidified with 3 M HCl (4 mL), extracted with chloroform (12 mL x 4), washed with brine (5 mL), dried over anhydrous MgSO₄ before being filtered and concentrated under reduced pressure. Purification using silica gel chromatography (eluent: DCM/MeOH = 20:1 to 10:1) to afford 27 as a colourless oil (41.7 mg, 0.132 mmol, 90%). TLC (DCM/MeOH = 10:1): $R_f = 0.27$; $[\alpha]^{22}_D = +38.9$ (c = 0.83, CHCl₃). (Lit⁷: $[\alpha]^{28}_D = +59.8$ (c = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ (ppm): 5.67 (dt, J = 15.5 Hz, 7.2 Hz, 1H), 5.45 (dd, J = 15.5 Hz, 6.1 Hz, 1H), 4.72 (d, J = 6.8 Hz, 1H), 4.60 (d, J = 6.8 Hz, 1H), 3.89-3.86 (m, 1H), 3.82-3.76 (m, 1H), 3.70 (td, J = 8.6 Hz, 3.4 Hz, 1H), 3.34 (s, 3H), 3.33-3.28 (m, 1H), 2.87 (dd, J = 15.5 Hz, 3.2 Hz, 1H), 2.53 (dd, J = 15.4 Hz, 8.2 Hz, 1H), 2.26-2.24 (m, 1H), 2.04-2.03 (m, 2H), 1.79-1.76 (m, 1H), 1.58-1.38 (m, 6H), 1.18 (d, J = 6.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 175.7, 132.6, 130.2, 95.3, 78.2, 77.4, 75.2, 68.2, 55.8, 38.7, 38.2, 32.3, 31.1, 29.9, 25.2, 23.5; FTIR (neat, NaCl, cm⁻¹): 3433, 2936, 1715, 1103, 1036; HRMS (ESI) *m/z* Calcd for C₁₆H₂₈O₆Na [M+Na] ⁺: 339.1784; found: 339.1770.

⁷ H. Fuwa, H. Yamaguchi and M. Sasaki, *Tetrahedron*, 2010, **66**, 7492-7503.

3.1 Determination of enantiomeric excess by HPLC for 9:

HPLC trace of 9 (Chiralcel OJ, hexanes/2-propanol = 100:0, 0.5 mL/min, 220 nm)

1156483

100.000

265195211

Total

100.000

3.2 Determination of enantiomeric excess by HPLC for 13:

HPLC trace of 13 (Chiralcel OB-H, hexanes/2-propanol = 90:10, 1.0 mL/min, 220 nm)

4. Optimization Tables:

4.1 Enzymatic kinetic resolution optimization

¹ Determined using NMR based on ratio of products ² Isolated yield over 2 steps ³ With isolation of **8**

References:

a) Review: A. Ghanem, *Tetrahedron*, 2007, **63**, 1721-1754. b) F. Felluga, C. Forzato, F. Ghelfi, P. Nitti, G. Pitacco, U. M. Pagnoni and F. Roncaglia, *Tetrahedron: Asymmetry*, 2007, **18**, 527-536.

4.2 Mukaiyama Aldol optimization

References:

- a. F. Fu, Y.-C. Teo and T.-P. Loh, *Tetrahedron Lett.*, 2006, 47, 4267-4269.
- b. J.-F. Zhao, B.-H. Tan and T.-P. Loh, *Chem. Sci.*, 2011, 2, 349-352.

References:

- a. T. Ollevier and B. Plancq, Chem. Commun., 2012, 48, 2289-2291.
- b. T. Kitanosono, T. Ollevier and S. Kobayashi, Chem. Asian J., 2013, 8, 3051-3062.

References:

a. D. A. Evans, J. A. Murry and M. C. Kozlowski, J. Am. Chem. Soc., 1996, 118, 5814-5815.

¹NMR yield based on internal standard ²Isolated yield

References:

a. S. E. Denmark, T. Wynn and G. L. Beutner, J. Am. Chem. Soc., 2002, 124, 13405-13407.

Acyl donor $\mathbb{R}^{1} \xrightarrow{\mathbb{R}^{2}} \mathbb{R}^{2}(x \text{ eq.})$									
OBn	OH	Ö Ru-OBn Catalyst (y mol%) Lipase (z mg/mmol)			OBn	OAc	Ru-	Ru-OBn Catalyst OBn Ph	
	<u></u>	$\frac{K_3PO_4(1.0\text{ eq.})}{\text{Toluene Air Temp Duration}}$			· T>		Pł	Ru, Ph	
		Toluene, All, Temp, Duration			~		00		
	ac-13 ° - "				L.	Su e Bu	<u> </u>		
Entry	Acyl donor (x)	(y)	Lipase (z)	Temp	Duration	Pdt Yield ¹	Pdt %ee	SM Yield ¹	
1	IPA (1.5)	4	N435 (8)	RT	109 h	(2%)	N.D. ⁴	(95%)	
2	IPA (1.5)	4	CAL-B(8)	RT	109 h	(3%)	N.D. ⁴	(97%)	
3	IPA (1.5)	4	N435 (32)	RT	109 h	(6%)	N.D. ⁴	(94%)	
4	IPA (1.5)	4	CAL-B(32)	RT	109 h	(8%)	N.D. ⁴	(92%)	
5	IPA (1.5)	_2	N435(8)	RT	72 h	(1%)	N.D. ⁴	(99%)	
6	IPA (1.5)	_2	CAL-B(8)	RT	72 h	(1%)	N.D. ⁴	(99%)	
7	IPA (1.5)	4	N435 (200)	RT	69 h	7%	40%	86%	
8	IPA (1.5)	4	CAL-B(200)	RT	69 h	10%	40%	81%	
9	IPA (1.5)	4	N435 (200)	60 °C	69 h	30%	36%	59%	
10	IPA (1.5)	4	CAL-B(200)	60 °C	69 h	27%	36%	58%	
11	VB(1.5)	4	N435 (200)	RT	120 h	(1%)	N.D. ⁴	(97%)	
12	VA (1.5)	4	N435 (200)	RT	120 h	(1%)	N.D. ⁴	(97%)	
13	VB (5.0)	4	N435 (200)	RT	120 h	(1%)	N.D. ⁴	(98%)	
14	VB(1.5)	4 ³	N435 (200)	RT	120 h	(1%)	N.D. ⁴	(97%)	
15	VB (1.5)	15	N435 (200)	RT	120 h	(1%)	N.D. ⁴	(96%)	
16	VA (1.5)	4	Lipase PS (200)	RT	70 h	(5%)	36%	(95%)	
17	IPA (1.5)	4	Lipase PS (200)	RT	70 h	(7%)	N.D. ⁴	(93%)	
18	VB (5.0)	4	Lipase PS (200)	RT	70 h	(3%)	N.D. ⁴	(97%)	
19	CPA (1.5)	4	Lipase PS (200)	RT	70 h	80%	3%	(1%)	
20	VB(1.5)	4	Lipase PS (200)	70 °C	70 h	(15%)	N.D. ⁴	(79%)	
21	CPA (1.5)	4	Lipase PS (200)	70 °C	70 h	68%	0%	(14%)	

4.3 Dynamic enzymatic kinetic resolution optimization

¹ Isolated Yields, NMR Yields shown in parenthesis using NO₂Ph as internal standard ² No Ru catalyst and K_3PO_4 , reaction in TBME ³ 2.0 eq. of K_3PO_4 used

Vinyl Acetate (VA):	$R^1 = Vinyl, R^2 = Me$	N435:	Novozyme 435
Isopropenyl Acetate (IPA):	$R^1 = Isopropenyl, R^2 = Me$	CAL-B:	Lipase from Candida antarctica
Vinyl Butyrate (VB):	$R^1 = Vinyl, R^2 = {}^nPr$	Lipase PS	immobilised on acrylic resin
<i>p</i> -Chlorophenyl Acetate (CPA):	$R^1 = p$ -Cl-phenyl, $R^2 = Me$: Lipase from Pseudomonas Cepacia

References:

- a. N. Kim, S.-B. Ko, M. S. Kwon, M.-J. Kim and J. Park, Org. Lett., 2005, 7, 4523-4526.
- b. J. Brem, A. Liljeblad, C. Paizs, M. I. Toşa, F.-D. Irimie and L. T. Kanerva, *Tetrahedron: Asymmetry*, 2011, **22**, 315-322.
- c. P. Hoyos, V. Pace and A. R. Alcántara, Adv. Synth. Catal., 2012, 354, 2585-2611.
- d. B. A. Persson, A. L. E. Larsson, M. Le Ray and J.-E. Bäckvall, J. Am. Chem. Soc., 1999, **121**, 1645-1650.

4.4 Asymmetric transfer hydrogenation optimization

OBn	o I4 O'Bu	[Ru(p-cy (R,R) HCO Solver	remene)Cl ₂] ₂ (2.5 n)-TsDPEN (6 mol% OOH/NEt ₃ Azeotrop (0.5 mL/mmol) nt, Temperature, 12	OBn OBn I3	OH O O'Bu	
	Entry	Solvent	Temperature	Yield ¹	%ee	
	1	DCM	RT	89% ²	97%	
	2	ACN	RT	99%	98%	
	3	DCM	40 °C	99%	94%	
	4	ACN	40 °C	98%	96%	
	5 ³	ACN	RT	98%	98%	

¹ Isolated Yields ² 10% SM remaining ³ Inert conditions

References:

- a. A. Fujii, S. Hashiguchi, N. Uematsu, T. Ikariya and R. Noyori, *J. Am. Chem. Soc.*, 1996, **118**, 2521-2522.
- b. R. Noyori and S. Hashiguchi, Acc. Chem. Res., 1997, 30, 97-102.
- c. Lutz F. Tietze, Y. Zhou and E. Töpken, Eur. J. Org. Chem., 2000, 2247-2252.
- d. P. N. Liu, P. M. Gu, F. Wang and Y. Q. Tu, Org. Lett., 2003, 6, 169-172.
- e. K. Everaere, A. Mortreux and J.-F. Carpentier, Adv. Synth. Catal., 2003, 345, 67-77.
- f. S. Gladiali and E. Alberico, Chem. Soc. Rev., 2006, 35, 226-236.

¹ Isolated Yields. ² [Cp*RhCl₂]₂ was used instead.

References:

- a. X. Wu, X. Li, A. Zanotti-Gerosa, A. Pettman, J. Liu, A. J. Mills and J. Xiao, *Chem. Eur. J.*, 2008, **14**, 2209-2222.
- b. X. Wu, X. Li, W. Hems, F. King and J. Xiao, Org. Biomol. Chem., 2004, 2, 1818-1821.

4.5 Triple reduction optimization

OBn OH 13		O ∜ O ^t Bu	1) m DCM, I 2) Et ₃ SiH BF ₃ ∙OE anhyd. C Temp,	CPBA, RT, 20 h (y eq.) Et ₂ (x eq.) CH ₂ Cl ₂ , N ₂ , Duration	O O'Bu HO''' 17	OBn +	O ^{/Bu} OBn 10 ^{///} 18	
	Entry	x	у	Conc.	Temp	Duration	Yield ¹ of 17	Yield ¹ of 18
	1	3.0	6.0	0.2 M	-20 °C	43 h	6%	41%
	2	4.0	6.0	1.0 M	-20 °C	20 h	5%	31%
	3	4.0	6.0	1.0 M	-78 -> -40 °C	> 70 h	5%	50%
	4	4.0	6.0	0.2 M	-40 °C	36 h	2%	62%
	5	6.0	10.0	0.2 M	-40 °C	15 h	8%	67%

¹ Isolated yield

4.6 Takai iodo-olefination optimization

 $^{\rm 1}$ Anhydrous solvents $^{\rm 2}$ Combined Isolated yields $^{\rm 3}$ Determined from crude NMR

4.7 Negishi coupling optimization

O TBSO Frage	Bu I O 23 ment B	+ F	OTBDF (3.0 eq 11 Fragme	PS	activat TI PdCl ₂ 2% T A	ted Zn du MEDA (y (Amphos PGS-75 r, Temp.	ust (x eq. r eq.) s) ₂ (z eq.) 0-M/H ₂ O , 24 h		DPSO,,, O'Bu 0 0 24	O + TBS	O ^t Bu H 50
	Entry	x	У	z	Temp.	Conc.	Conv.	Yield ¹ of 24	<i>E/Z</i> of 24	Yield ² of 23-H	
	1	6.0	4.0	0.10	RT	0.3 M	15%	0%	-	N.D ⁴	
	2	3.0	5.0	0.15	40 °C	0.1 M	100%	74%	58:42	8%	
	3	3.0	5.0	0.15	40 °C	0.2 M	100%	76%	91:9	6%	
	4	6.0	5.0	0.15	40 °C	0.1 M	100%	79%	73:27	2%	
	5	6.0	5.0	0.15	RT	0.2 M	31%	9%	$N.D^4$	11%	
	6	6.0	5.0	0.15	40 °C	0.5 M	100%	74%	91:9	11%	
	7	6.0	5.0	0.05	40 °C	0.5 M	100%	68%	>95:5	14%	
	8	4.0	5.0	0.05	40 °C	0.5 M	88%	59%	>95:5	17%	
	9	3.0	2.0	0.01	40 °C	0.5 M	68%	45%	>95:5	11%	

¹Isolated yields ²Determined from crude NMR ³Unactivated Zn dust ⁴Not determined

5. ¹H NMR and ¹³C NMR Spectra 400 MHz

75 MHz

100 MHz

100 MHz

S54

100 MHz, CD₂Cl₂

100 MHz

100 MHz

6. X-Ray Structure for *rac-23*

Cambridge Crystallographic Data Centre Deposition Number: 1047243

