Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2015

> Supplementary Material (ESI) for Green Chemistry This journal is (c) The Royal Society of Chemistry 2011

ELECTRONIC SUPPLEMENTARY INFORMATION

CO₂, COS and CS₂ Adducts of N-Heterocyclic Olefin and Their Application as Organocatalysts for Carbon Dioxide Fixation

Yan-Bo Wang, Dong-Sheng Sun, Hui Zhou, Wen-Zhen Zhang, and Xiao-Bing Lu*

State Key Laboratory of Fine Chemicals, Dalian University of Technology,

Dalian, 116024, China E-mail: xblu@dlut.edu.cn

Contents:

1. Crystallography	·	S2
--------------------	---	----

2, Representative ¹H NMR and ¹³C NMR comparison for **2b**, **2g**, **3b** and **3g**......S3

1. Crystallography

Single crystals of complexes **2b** and **2g** suitable for X-ray structural analysis were obtained from a CH₃CN/Et₂O solution at -30°C. Single crystals of complexes **2g** and **3g** suitable for X-ray structural analysis were obtained from a CH₂Cl₂/Et₂O solution at -30 °C. Diffraction datas were collected at 220 K on a Bruker SMART-CCD diffractometer using graphite-monochromated Mo K α radiation ($\lambda = 0.71073$ Å). The structures were solved by direct methods and refined by full-matrix least squares on F^2 . All nonhydrogen atoms were refined anisotropically, and the hydrogen atoms were included in idealized positions. All calculations were performed using the SHELXTL crystallographic software packages. Details of the crystal data, data collections, and structure refinements are summarized in Table S1. CCDC-1062154 (**2b**), CCDC-1062155 (**2g**), CCDC-1062156 (**3b**) and CCDC-1062157 (**3g**) contain supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

	2b	2g	3b	3g
mol formula	$C_{11}H_{18}N_2OS$	$C_{20}H_{28}N_2OS$	$C_{11}H_{18}N_2S_2 \\$	$C_{20}H_{28}N_2S_2 \\$
molwt	226.30	344.50	242.39	360.56
crystsyst	Monoclinic	Monoclinic	Monoclinic	Monoclinic
space group	P2(1)/n	P2(1)/c	P2(1)/n	P2(1)/c
a/Å	12.6450(3)	10.4317(3)	7.995(1)	10.167(1)
<i>b</i> /Å	15.1066(4)	15.4783(5)	15.115(2)	16.078(2)
$c/{ m \AA}$	13.2140(2)	11.9638(4)	11.488(2)	12.986(1)
α/deg	90.00	90.00	90.00	90.00

Table S1. Crystal data and structural refinement details for complexes 2b, 2g, 3b and 3g

β/deg	93.207(2)	102.189(2)	107.186(5)	103.802(5)
γ/deg	90.00	90.00	90.00	90.00
$V/\text{\AA}^3$	2520.2(1)	1888.2(1)	1326.3(3)	2061.4(4)
R _{int}	0.0499	0.0471	0.0222	0.0257
R1 (I >2σ)	0.0546	0.0510	0.0464	0.0441
wR2 (Ι >2σ)	0.1051	0.1149	0.1201	0.1059
GOF	1.027	1.054	1.074	1.037

2, Representative ¹H NMR and ¹³C NMR comparison for 2b, 2g, 3b and 3g.

