Supporting information

Optimization of reaction conditions for amination of diarylmethanes for 3-substituted indolin-2-ones Optimization of reaction conditions Optimization of reaction conditions for amination of aldehydes Control experiments for amination of diarylmethane Control experiments for amination of 3-substituted indolin-2-one Control experiment for amidation of aldehyde General ••••••••••••••••••••••••••••• materials Preparation starting (1a-m for the and 4a-General procedure for the amination of diarylmethanes Characterization of intermediates •••••**\$**9 Characterization of diarylmethylamines •• S12 General procedure for the amination of 3-substituted indolin-2-ones Characterization of intermediates ••••••S17 Characterization of 3-aminoindolin-2-ones 4

General	procedure	for	the	amination	of	aldehydes
(6) • • • • •	•••••	• • • • •	••••	•••••	• \$30	
Characterizatio	on		of			amides
(7) • • • •	• • • • • • • •	• • • • •	••••	•••••		• • • •
• • • • • • •	•••••\$31					
References •	• • • • • • • •	••••	••••	• • • • • • • •	• • • • •	• • • •
•••••		••••	• • • • •		• S35	
LC-						
MS····	•••••	• • • • •	• • • • •	• • • • • • •	••••	• • • • •
•••••		••••	• • • • •		S36	
¹ H,	13(C		and		¹⁹ F
spectra • • •	• • • • • • • •		• • • • •	•••••	• • • • •	• • • •
		• • • • •	••\$76			

Optimization of reaction conditions for amination of diarylmethanes 1

Ph Ph NH							
Ph	[l]/Oxi `Ph	dant 2 1 eq	uiv Ph		nc.HCl (aq)	$\stackrel{\rm NH_2}{\downarrow}$	
	Sove	nt, Temp, Tir	ne P	h Ph	MeOH Pł	∩´ `Ph	
1a	l			8		3a	
1 eq	uiv						
Entry	[I] or [M]	Oxidant	Solvent	Temp	Time (h)	Yield% ^[b]	
1	FeBr ₃	DTBP	-	90°C	48	79	
2	Bu₄NI	TBHP ^[d]	H ₂ O	100°C	24	35	
3	Bu₄NI	DTBP	H ₂ O	100°C	24	0	
4	Bu₄NI	H_2O_2	H ₂ O	100°C	24	0	
5	Bu₄NBr	TBHP ^[d]	H ₂ O	100°C	24	0	
6	NIS	TBHP ^[d]	H ₂ O	100°C	24	66	
7	KI	TBHP ^[d]	H ₂ O	100°C	24	67	
8	Phl	TBHP ^[d]	H ₂ O	100°C	24	0	
9	I_2	TBHP ^[d]	H ₂ O	100°C	24	44	
10	-	TBHP ^[d]	H ₂ O	100°C	24	0	
11 ^[c]	KI	TBHP ^[d]	H ₂ O	100°C	48	80	

Table 1s. Optimization of reaction conditions for amination of diarylmethanes 1.

[a] Unless otherwise noted, reactions were carried out with diphenylmethane **1a** (1 mmol), benzophenone imine **2** (1 mmol), "I" (0.1 mmol) and oxidant (2 mmol).

[b] Isolated yield of two steps.

[c] benzophenone imine **2** (2 mmol), oxidant (3 mmol) were used.

[d] 70% aqueous solution.

Optimization of reaction conditions for 3-substituted indolin-2-ones 4

Table 2s. Optimization of reaction conditions for 3-substituted indolin-2-ones 4.

C Z H	[I]/Oxidar Solve	Ph Ph NH 2 nt 2 equiv	$\rightarrow \hat{[}$	Ph Ph Ph Ph Ph H	conc. HCl (aq) MeOH	
4a				9		6a
Entry	[1]	Oxidant	Solvent	Temp	Time (h)	Yield% ^[b]
1	Bu₄NI	TBHP ^[d]	Hexane	Reflux	6	79
2	Bu₄NI	TBHP ^[d]	H ₂ O	100°C	6	45
3	Bu₄NI	TBHP ^[d]	H ₂ O	70°C	6	72
4	Bu₄NI	DTBP	H ₂ O	70°C	6	0
5	Bu₄NI	H_2O_2	H ₂ O	70°C	6	0
6	Bu₄NBr	TBHP ^[d]	H ₂ O	70°C	6	0
7	NIS	TBHP ^[d]	H ₂ O	70°C	6	44
8	KI	TBHP ^[d]	H ₂ O	70°C	6	34
9	Phl	TBHP ^[d]	H ₂ O	70°C	6	0
10	I_2	TBHP ^[d]	H ₂ O	70°C	6	49
11	-	TBHP ^[d]	H ₂ O	70°C	6	0
12 ^[c]	Bu₄NI	TBHP ^[d]	H ₂ O	70°C	12	83

[a] Unless otherwise noted, reactions were carried out with 3-benzylindolin-2-one **4a** (1 mmol), benzophenone imine **2** (1 mmol), "I" (0.1 mmol) and oxidant (2 mmol).

[b] Isolated yield of two steps.

[c] benzophenone imine (2 mmol), oxidant (3 mmol) were used.

[d] 70% aqueous solution.

Optimization of reaction conditions for amination of aldehydes 6

Table 3s. Optimization of reaction conditions for amination of aldehydes 6.

	Ph					
	0	[I]/Ox Sol	NH 2 [I]/Oxidant 1 equiv Solvent, Temp,Time			NH ₂
	6a				7a	
	1 equiv					
Entry	[l] or [M]	Oxidant	Solvent	Temp	Time (h)	Yield% ^[b]
1	CuBr	TBHP ^[d]	MeCN	Reflux	12	0
2	Bu₄NI	TBHP ^[d]	Hexane	Reflux	12	59
3	Bu₄NI	TBHP ^[d]	H ₂ O	100°C	12	60
4	Bu₄NI	DTBP	H ₂ O	100°C	12	0
5	Bu₄NI	H_2O_2	H ₂ O	100°C	12	0
6	Bu₄NBr	TBHP ^[d]	H_2O	100°C	12	27
7	NIS	TBHP ^[d]	H ₂ O	100°C	12	24
8	KI	TBHP ^[d]	H ₂ O	100°C	12	46
9	PhI	TBHP ^[d]	H ₂ O	100°C	12	12
10	l ₂	TBHP ^[d]	H ₂ O	100°C	12	59
11	-	TBHP ^[d]	H ₂ O	100°C	12	35
12	Bu₄NI	TBHP ^[d]	H_2O	50°C	12	36
13	Bu₄NI	TBHP ^[d]	H ₂ O	25°C	12	<5
14 ^[c]	Bu₄NI	TBHP ^[d]	H ₂ O	100°C	24	81

[a] Unless otherwise noted, reactions were carried out with benzaldehyde **6a** (1 mmol), benzophenone imine **2** (1 mmol), "I" (0.1 mmol) and oxidant (2 mmol).

[b] Isolated yield of two steps.

[c] benzophenone imine (2 mmol), oxidant (3 mmol) were used.

[d] 70% aqueous solution.

Control experiments for amination of diarylmethane 1a

When equivalent TEMPO (a radical-trapping reagent) was added in the amination of diphenylmethane **1a**, the desired amine product **3a** was obtained in trace quantity (Table 1, entry 1). The amination of **1a** did not occur in the presence of KI, I_2 , KIO₃ or KIO₄ under neutral conditions (Table 1, entries 2, 3, 5 and 6). In contrast, desired product **3a** was obtained in 78% yield in the presence of I_2 under basic condition (Table 1, entry 4). Hypoiodite anion (IO⁻) might be generated from I_2 under basic condition, and then might be disproportioned to iodite anion (IO₂⁻) and iodide anion (I⁻).^[1] Hence, hypoiodite (+1) or iodite (+3) might be catalytic species for our oxidative amination of diarylmethanes **1**.

ŇΗ 2 [I]/Additives conc.HCl (aq) 2 equiv NH_2 Ph Ph Ph `Ph Ph Ph Ph MeOH H₂O, 100°C, 48 h 1a 8 3a 1 equiv Yield% (3a)[b] Entry [I] Oxidant Additives 1 KI (0.1 eq) TBHP (3 eq) TEMPO (1 eq) Trace 2 KI (1 eq) 0 3 $I_2(1 eq)$ 0 4 KOH (2 eq) 78 $I_2(1 eq)$ 5 $KIO_3(1 eq)$ 0 0 6 KIO₄ (1 eq)

Table 4s. Control experiments for amination of diarylmethane 1a.

[a] Unless otherwise noted, reactions were carried out with diphenylmethane **1a** (1 mmol) and benzophenone imine **2** (2 mmol).

[b] Isolated yield.

Control experiments for amination of 3-substituted indolin-2-one 4a

In the presence of equivalent TEMPO, the desired product **5a** and the imine intermediate **9** were obtained in trace quantity employing **4a** as starting material (Table 2, entry 1). No product was observed in the presence of TBAI under neutral condition. On the contrary, amination occured in the presence of I_2 under neutral condition and primary amine **5a** was obtained in 75% yield (Table 2, entry 3). Notably, in the presence of I_2 under basic condition, imine **9** rather than primary amine **5a** was generated (Table 2, entry 4) which probably resulted from elimination of hydrogen iodide under basic condition so that the imine **9** was not hydrolyzed. lodate (+5) and periodate (+7) were inert under both neutral and basic conditions (Table 2, entries 5, 6, 7 and 8). Therefore, iodine (0), hypoiodite (+1) or iodite (+3) may be catalytic species for our oxidative amination of 3-substituted indolin-2-ones **4**.

Table 5s. Control experiments for amination of 3-substituted indolin-2-one 4a.

Entry	[1]	Oxidant	Additives	Yield%(9/5a) ^[b]
1	TBAI (0.1 eq)	TBHP (3 eq)	TEMPO (1 eq)	Trace
2	TBAI (1 eq)	-	-	0/0
3	l ₂ (1 eq)	-	-	0/75
4	l ₂ (1 eq)	-	Bu₄NOH (2 eq)	72/0
5	NalO ₃ (1 eq)	-	-	0/0
6	NalO ₃ (1 eq)	-	Bu₄NOH (1 eq)	0/0
7	NalO ₄ (1 eq)	-	-	0/0
8	NalO₄ (1 eq)	-	Bu ₄ NOH (1 eq)	0/0

[a] Unless otherwise noted, reactions were carried out with 3-benzylindolin-2-one 4a (1 mmol) and benzophenone imine 2 (2 mmol).
[b] Isolated yield.

Control experiment for amidation of aldehyde 6a

The radical-trapping experiment employing TEMPO suggested that a radical intermediate might be involved in our amidation of aldehydes (Table 3, entry 1). No product was observed in the presence of TBAI or I_2 under neutral condition (Table 3, entries 2 and 3). Hypoiodite (+1) and iodite (+3) were inert pre-catalyst for this reaction (Table 3, entry 4). On the contrary, in the presence of iodate (+5) and periodate (+7) amidation occured under basic conditions (Table 3, entries 6 and 8) in 27% and 49% yields, respectively. Thus, iodate (+5) and periodate (+7) might be catalytic species which promoted our oxidative amidation of aldehyde **6a**.

Table 6s. Control experiment for amidation of aldehyde 6a.

	0 + F	Ph [I]/Ad NH H ₂ O, 10	ditive	O │ NH₂
	6a 1 equiv	2 2 equiv	7a	
Entry	[l](1 eq)	Oxidant	Additives	Yield% ^[b]
1	TBAI (0.1 eq)	TBHP (3 eq)	TEMPO (1 eq)	Trace
2	TBAI (1 eq)	-	-	0
3	l ₂ (1 eq)	-	-	0
4	I ₂ (1 eq)	-	Bu₄NOH (2 eq)	0
5	NalO ₃ (1 eq)	-	-	0
6	NalO ₃ (1 eq)	-	Bu₄NOH (1 eq)	27
7	NalO ₄ (1 eq)	-	-	0
8	NalO₄ (1 eq)	-	Bu₄NOH (1 eq)	49

[a] Unless otherwise noted, reactions were carried out with benzaldehyde **6a** (1 mmol) and benzophenone imine **2** (2 mmol).

[b] Isolated yield.

General methods

The reagents (chemicals) were purchased from J&K, Energy Chemical, Adamas, Accela and Shanghai Chemical Reagent Co. and used without further purification. Analytical thinlayer chromatography (TLC) was HSGF 254 (150–200 μ m thickness; Yantai Huiyou Co., China). Nuclear magnetic resonance (NMR) spectroscopy was performed on a Bruker AMX-400 NMR (IS as TMS). Chemical shifts were reported in parts per million (ppm, δ) downfield from tetramethylsilane. Proton coupling patterns were described as singlet (s), doublet (d), triplet (t), quartet (q), multiplet (m), and broad (br). High-resolution mass spectral analysis (HRMS) was performed on Thermo Fisher Scientific LTQ FT Ultra mass spectrometer at Shanghai Institute of Organic Chemistry, Chinese Academic of Sciences.

Preparation for the starting materials (1a-m and 4a-r)

The starting materials (**6a-p**) were purchased from J&K, Energy Chemical, Adamas, Accela and Shanghai Chemical Reagent Co. and used without further purification. **1a-m** and **4a-r** were prepared as the previously reported methods in the literatures. ^[2, 3]

General procedure for the amination of diarylmethanes (1)

To a mixture of diarlymethane **1** (1 mmol), KI (16.6 mg, 0.1 mmol, 10 mmol%) and benzophenone imine **2** (362.2 mg, 2 mmol) was added TBHP (70% in water, 386 mg, 3 mmol) at room temperature. After stirring at 100 °C for 48 h, the reaction mixture was poured into saturated Na₂S₂O₃ (aqueous solution, 5 mL), extracted with ethyl acetate (3×5 mL) and washed with brine. The combined organic layers were dried over anhydrous Na₂SO₄ and solvent was removed in vacuo. The residue was dissolved in methanol (5 mL) without further purification. To the solution was added conc. HCI (aqueous solution, 0.5 mL).the reaction mixture was stirred at 50 °C. The reaction was monitored by TLC analysis. After the completion, solvents were removed in vacuo and 10 mL of water was added to the residue. The mixture was washed with diethyl ether (3×3 mL). The aqueous layer was separated and basified with saturated NaHCO₃ (aqueous solution) until pH=9. Then the mixture was extracted with ethyl acetate (3×5 mL) and washed with brine. The combined organic layers were dried over anhydrous Na₂SO₄ and solvent was removed in vacuo to afford analytically

pure primary amine 3.

Characterization of intermediates 8

N-benzhydryl-1,1-diphenylmethanimine (8a)

¹**H NMR (400 MHz, DMSO-***d*₆) δ : 7.71 (d, *J* = 6.8 Hz, 2H), 7.62-7.55 (m, 3H), 7.49 (dt, *J* = 14.2, 6.7 Hz, 3H), 7.35 (d, *J* = 4.4 Hz, 8H), 7.26 (dq, *J* = 8.6, 4.1 Hz, 2H), 7.10 (dd, *J* = 6.4, 2.8 Hz, 2H), 5.54 (s, 1H).

¹³C NMR (101 MHz, DMSO-d₆) δ: 166.48, 144.55, 139.09, 135.79, 130.37, 128.79, 128.69, 128.42, 128.29, 128.14, 127.13, 127.04, 126.73, 69.27.

HRMS (ESI) m/z calcd C₂₆H₂₂N [M+H]⁺ 348.1747, found 348.1749.

1,1-diphenyl-N-(phenyl(m-tolyl)methyl)methanimine (8b) MS (ESI) m/z calcd C₂₇H₂₄N [M+H]⁺ 362.2, found 362.0.

1,1-diphenyl-N-(phenyl(p-tolyl)methyl)methanimine (8c) MS (ESI) m/z calcd C₂₇H₂₄N [M+H]⁺ 362.2, found 362.0.

N-(di-p-tolylmethyl)-1,1-diphenylmethanimine (8d)

MS (ESI) m/z calcd C₂₈H₂₆N [M+H]⁺ 376.2, found 376.0.

N-((4-methoxyphenyl)(phenyl)methyl)-1,1-diphenylmethanimine (8e) MS (ESI) m/z calcd C₂₇H₂₄NO [M+H]⁺ 378.2, found 378.0.

N-((2-fluorophenyl)(phenyl)methyl)-1,1-diphenylmethanimine (8f) MS (ESI) m/z calcd C₂₆H₂₁FN [M+H]⁺ 366.2, found 366.0.

N-((4-fluorophenyl)(phenyl)methyl)-1,1-diphenylmethanimine (8g) MS (ESI) m/z calcd C₂₆H₂₁FN [M+H]⁺ 366.2, found 366.0.

N-(bis(4-fluorophenyl)methyl)-1,1-diphenylmethanimine (8h) MS (ESI) m/z calcd C₂₆H₂₀F₂N [M+H]⁺ 384.2, found 383.9.

1,1-diphenyl-N-(phenyl(4-(trifluoromethyl)phenyl)methyl)methanimine (8i) MS (ESI) m/z calcd $C_{27}H_{21}F_3N$ [M+H]⁺ 416.2, found 416.0.

N-((4-bromophenyl)(phenyl)methyl)-1,1-diphenylmethanimine (8j) MS (ESI) m/z calcd C₂₆H₂₁BrN [M+H]⁺ 426,1, found 425.9.

N-((2-chlorophenyl)(phenyl)methyl)-1,1-diphenylmethanimine (8k) MS (ESI) m/z calcd C₂₆H₂₁CIN [M+H]⁺ 382.1, found 382.0.

N-((4-chlorophenyl)(phenyl)methyl)-1,1-diphenylmethanimine (8l) MS (ESI) m/z calcd C₂₆H₂₁CIN [M+H]⁺ 382.1, found 382.0.

N-(bis(4-chlorophenyl)methyl)-1,1-diphenylmethanimine (8m) MS (ESI) m/z calcd $C_{26}H_{20}Cl_2N$ [M+H]⁺ 416.1, found 415.9.

Characterization of diarylmethylamines (3)

Diphenylmethanamine (3a): 80% yield. Light yellow liquid.

¹**H NMR (400 MHz, CDCl₃)** δ: 7.36 (d, *J* = 7.7 Hz, 4H), 7.29 (t, *J* = 7.5 Hz, 4H), 7.21 (q, *J* = 6.9 Hz, 2H), 5.18 (s, 1H), 1.83 (s, 2H).

¹³C NMR (101 MHz, CDCl₃) δ: 145.61, 128.53, 127.00, 126.94, 59.78.

HRMS (ESI) *m*/*z* calcd C₁₃H₁₄N [M+H]⁺ 184.1121, found 184.1121.

Phenyl(m-tolyl)methanamine (3b): 82% yield. Light yellow liquid.

¹H NMR (400 MHz, CDCl₃) δ: 7.37 (d, *J* = 7.4 Hz, 2H), 7.31 (t, *J* = 7.5 Hz, 2H), 7.25-7.13 (m, 4H), 7.04 (d, *J* = 7.0 Hz, 1H), 5.19 (s, 1H), 2.52 (s, 2H), 2.32 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ: 144.30, 144.21, 136.99, 127.39, 127.32, 126.69, 126.52, 125.86, 125.82, 122.89, 58.56, 20.41.

HRMS (ESI) m/z calcd C₁₄H₁₆N [M+H]⁺ 198.1277, found 198.1276.

Phenyl(p-tolyl)methanamine (3c): 75% yield. Light yellow liquid.

¹H NMR (400 MHz, CDCl₃) δ: 7.37 (d, J = 7.4 Hz, 2H), 7.31 (t, J = 7.2 Hz, 2H), 7.27-7.21 (t,

3H), 7.11 (d, 2H), 5.20 (s, 1H), 2.74 (s, 2H), 2.32 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ: 144.60, 141.52, 135.45, 128.09, 127.39, 125.82, 125.77, 125.73, 58.35, 19.98.

HRMS (ESI) *m*/*z* calcd C₁₄H₁₆N [M+H]⁺ 198.1277, found 198.1278.

Di-p-tolylmethanamine (3d): 74% yield. Light yellow liquid.

¹**H NMR (400 MHz, CDCl₃)** δ: 7.25 (d, *J* = 9.3 Hz, 4H), 7.10 (d, *J* = 7.8 Hz, 4H), 5.20 (s, 1H), 2.32 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ: 142.74, 136.52, 129.21, 126.82, 59.19, 21.12.

HRMS (ESI) m/z calcd C₁₅H₁₈N [M+H]⁺ 212.1434, found 212.1433.

(4-Methoxyphenyl)(phenyl)methanamine (3e): 79% yield. Yellow liquid.

¹H NMR (400 MHz, CDCl₃) δ: 7.36 (d, *J* = 7.5 Hz, 2H), 7.30 (dd, *J* = 13.5, 7.9 Hz, 4H), 7.23 (t, *J* = 7.1 Hz, 1H), 6.84 (d, *J* = 8.6 Hz, 2H), 5.19 (s, 1H), 3.78 (s, 3H), 2.74 (s, 2H).

¹³C NMR (101 MHz, CDCl₃) δ: 157.45, 144.64, 136.59, 127.37, 126.90, 125.79, 125.72, 112.73, 57.96, 54.10.

HRMS (ESI) *m*/*z* calcd C₁₄H₁₆NO [M+H]⁺ 214.1226, found 214.1226.

(2-Fluorophenyl)(phenyl)methanamine (3f): 58% yield. Light yellow liquid.

¹**H NMR (400 MHz, CDCI₃)** δ : 7.46 (t, *J* = 7.5 Hz, 1H), 7.40 (d, *J* = 7.6 Hz, 2H), 7.32 (t, *J* = 7.4 Hz, 2H), 7.22 (dd, *J* = 12.2, 6.6 Hz, 2H), 7.12 (t, *J* = 7.5 Hz, 1H), 7.05-6.97 (m, 1H), 5.52 (s, 1H), 2.29 (s, 2H).

¹³C NMR (101 MHz, CDCl₃) δ: 160.46, 158.02, 143.07, 131.62, 131.48, 127.52, 127.43, 126.95, 126.91, 126.06, 125.75, 123.24, 123.21, 114.51, 114.29, 52.08, 52.05.

¹⁹F NMR (376 MHz, CDCl₃) δ: -118.36.

HRMS (ESI) *m*/*z* calcd C₁₃H₁₃NF [M+H]⁺ 202.1027, found 202.1026.

(4-Fluorophenyl)(phenyl)methanamine (3g): 85% yield. Light yellow liquid.

¹H NMR (400 MHz, CDCl₃) δ: 7.33 (dd, *J* = 16.4, 7.7 Hz, 6H), 7.24 (s, 1H), 6.99 (t, *J* = 8.4 Hz, 2H), 5.24 (s, 1H), 2.65 (s, 2H).

¹³C NMR (101 MHz, CDCl₃) δ: 161.97, 159.54, 144.00, 139.88, 129.01, 127.52, 127.47, 127.39, 127.22, 126.10, 125.73, 114.27, 114.06, 57.91.

¹⁹**F NMR (376 MHz, CDCI₃)** δ: -115.73.

HRMS (ESI) *m*/*z* calcd C₁₃H₁₃NF [M+H]⁺ 202.1027, found 202.1026.

Bis(4-fluorophenyl)methanamine (3h): 83% yield. Light yellow liquid.

¹H NMR (400 MHz, CDCl₃) δ: 7.32 (dd, J = 8.6, 5.5 Hz, 4H), 7.00 (t, J = 8.7 Hz, 4H), 5.20 (s, 1H), 1.81 (s, 2H).

¹³C NMR (101 MHz, CDCl₃) δ: 162.02, 159.58, 140.06, 140.03, 127.34, 127.26, 114.37, 114.16, 57.35.

¹⁹F NMR (376 MHz, CDCl₃) δ -115.7.

HRMS (ESI) *m*/*z* calcd C₁₃H₁₂NF₂ [M+H]⁺ 220.0932, found 220.0931.

Phenyl(4-(trifluoromethyl)phenyl)methanamine (3i): 70% yield. Light yellow liquid.

¹**H NMR (400 MHz, CDCl₃)** δ: 7.61-7.49 (m, 4H), 7.33 (dt, *J* = 15.8, 8.0 Hz, 5H), 5.31 (s, 1H), 2.27 (s, 2H).

¹³C NMR (101 MHz, CDCl₃) δ: 148.16, 143.53, 129.05, 127.69, 127.26, 126.39, 126.21, 125.84, 124.46, 124.42, 124.38, 124.35, 58.41.

¹⁹**F NMR (376 MHz, DMSO-***d***₆)** δ: -67.14.

HRMS (ESI) m/z calcd $C_{14}H_{13}NF_3$ [M+H]⁺ 252.0995, found 252.0994.

(4-Bromophenyl)(phenyl)methanamine (3j): 82% yield. Light yellow liquid.

¹H NMR (400 MHz, CDCl₃) δ: 7.43 (d, J = 8.4 Hz, 2H), 7.36-7.29 (m, 4H), 7.26 (t, J = 7.0 Hz, 4H), 5.18 (s, 1H), 2.14 (s, 2H).

¹³C NMR (101 MHz, CDCl₃) δ: 145.10, 144.56, 131.57, 128.74, 128.68, 127.27, 126.86, 120.81, 59.24.

HRMS (ESI) *m*/*z* calcd C₁₃H₁₃NBr [M+H]⁺ 262.0226, found 262.0225.

(2-Chlorophenyl)(phenyl)methanamine (3k): 54% yield. Light yellow liquid.

¹H NMR (400 MHz, CDCl₃) δ : 7.53 (d, J = 7.8 Hz, 1H), 7.39 (d, J = 7.6 Hz, 2H), 7.33 (dd, J = 12.7, 7.1 Hz, 3H), 7.25 (s, 2H), 7.19 (t, J = 7.5 Hz, 1H), 5.66 (s, 1H), 2.33 (s, 2H).

¹³C NMR (101 MHz, CDCl₃) δ: 143.80, 142.81, 133.19, 132.47, 130.11, 129.68, 128.46, 128.35, 128.32, 128.23, 127.23, 127.14, 127.12, 55.87.

HRMS (ESI) *m*/*z* calcd C₁₃H₁₃NCI [M+H]⁺ 218.0731, found 218.0732.

(4-Chlorophenyl)(phenyl)methanamine (3I): 84% yield. Light yellow liquid.

¹H NMR (400 MHz, CDCl₃) δ: 7.36-7.29 (m, 6H), 7.25 (dd, *J* = 14.8, 7.8 Hz, 3H), 5.20 (s, 1H), 2.18 (s, 2H).

¹³C NMR (101 MHz, CDCl₃) δ: 145.16, 144.03, 132.67, 128.67, 128.62, 128.36, 127.26, 126.86, 59.18.

HRMS (ESI) *m*/z calcd C₁₃H₁₃NCI [M+H]⁺ 218.0731, found 218.0729.

Bis(4-chlorophenyl)methanamine (3m): 73% yield. Light yellow liquid.
¹H NMR (400 MHz, CDCl₃) δ: 7.29 (s, 8H), 5.17 (s, 1H), 1.72 (s, 2H).
¹³C NMR (101 MHz, CDCl₃) δ: 143.60, 132.91, 128.72, 128.20, 58.57.
HRMS (ESI) *m*/*z* calcd C₁₃H₁₂NCl₂ [M+H]⁺ 252.0341, found 252.0340.

General procedure for the amination of 3-substituted indolin-2-ones (4)

To a mixture of 3-substituted indolin-2-ones **4** (1 mmol), TBAI (36.9 mg, 0.1 mmol, 10 mmol%) and benzophenone imine **2** (362.2 mg, 2 mmol) was added TBHP (70% in water, 386 mg, 3 mmol) at room temperature. After stirring at 70 °C for 12 h, the reaction mixture was poured into saturated $Na_2S_2O_3$ (aqueous solution, 5 mL), extracted with ethyl acetate (3×5 mL) and washed with brine. The combined organic layers were dried over anhydrous Na_2SO_4 and solvent was removed in vacuo. The residue was dissolved in methanol (5 mL) without further purification. To the solution was added conc. HCI (aqueous solution, 0.5 mL), the reaction mixture was stirred at 50 °C. The reaction was monitored by TLC analysis. After the completion, solvents were removed in vacuo and 10 mL of water was added to the residue. The mixture was washed with diethyl ether (3×3 mL). The aqueous layer was separated and basified with saturated $NaHCO_3$ (aqueous solution) until pH=9. Then the mixture was extracted with ethyl acetate (3×5 mL) and washed with brine. The combined organic layers were dried over anhydrous to afford analytically pure primary amine **5**.

Characterization of intermediates 9

3-benzyl-3-((diphenylmethylene)amino)indolin-2-one (9a)

¹**H NMR (400 MHz, DMSO**-*d*₆) δ : 9.59 (s, 1H), 7.57-7.49 (m, 2H), 7.45 (t, *J* = 7.2 Hz, 1H), 7.38 (t, *J* = 7.4 Hz, 2H), 7.19 (t, *J* = 7.5 Hz, 1H), 7.15-6.94 (m, 8H), 6.90 (d, *J* = 6.7 Hz, 1H), 6.87-6.79 (m, 1H), 6.46 (s, 2H), 6.20 (d, *J* = 7.7 Hz, 1H), 3.65 (d, *J* = 12.7 Hz, 1H), 3.27 (d, *J* = 12.7 Hz, 1H).

¹³C NMR (101 MHz, DMSO-d₆) δ: 177.92, 169.43, 141.37, 139.72, 135.90, 135.39, 132.91, 130.56, 130.47, 128.12, 128.08, 127.99, 127.74, 127.36, 127.21, 126.98, 126.36, 123.97, 120.95, 109.11, 70.34, 47.08.

HRMS (ESI) *m*/*z* calcd C₂₈H₂₃N₂O [M+H]⁺ 403.1805, found 403.1810.

3-((diphenylmethylene)amino)-3-(4-fluorobenzyl)indolin-2-one (9b)

¹H NMR (400 MHz, DMSO-*d*₆) δ : 9.61 (s, 1H), 7.56-7.48 (m, 2H), 7.48-7.42 (m, 1H), 7.38 (t, *J* = 7.4 Hz, 2H), 7.19 (t, *J* = 7.5 Hz, 1H), 6.98 (tdd, *J* = 25.2, 19.3, 14.2 Hz, 8H), 6.87-6.81 (m, 1H), 6.43 (s, 2H), 6.22 (d, *J* = 7.7 Hz, 1H), 3.62 (d, *J* = 12.8 Hz, 1H), 3.26 (d, *J* = 12.8 Hz, 1H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ : 177.85, 169.59, 141.32, 139.66, 135.89, 132.80, 132.31, 132.23, 131.57, 131.54, 130.50, 128.17, 128.13, 127.99, 127.77, 127.35, 126.99, 123.94, 121.05, 114.06, 113.85, 109.15, 70.27, 46.08.

HRMS (EI) *m*/*z* calcd C₂₈H₂₁FN₂O (M⁺) 420.1638, found 420.1639.

3-((diphenylmethylene)amino)-3-(4-nitrobenzyl)indolin-2-one (9c)

S18

¹**H NMR (400 MHz, DMSO-***d*₆) δ : 9.73 (s, 1H), 8.04 (d, *J* = 8.6 Hz, 2H), 7.52 (d, *J* = 7.3 Hz, 2H), 7.46 (t, *J* = 7.2 Hz, 1H), 7.39 (t, *J* = 7.3 Hz, 2H), 7.31 (d, *J* = 8.6 Hz, 2H), 7.20 (t, *J* = 7.4 Hz, 1H), 7.03 (t, *J* = 7.3 Hz, 3H), 6.87 (q, *J* = 7.1 Hz, 2H), 6.46 (s, 2H), 6.25 (d, *J* = 7.7 Hz, 1H), 3.73 (d, *J* = 12.5 Hz, 1H), 3.39 (d, *J* = 12.6 Hz, 1H).

¹³C NMR (101 MHz, DMSO-d₆) δ: 178.08, 170.47, 146.77, 144.43, 141.65, 140.03, 136.25, 132.96, 132.47, 131.13, 128.93, 128.70, 128.55, 128.36, 127.83, 127.55, 124.54, 122.76, 121.76, 109.83, 70.48, 46.89.

HRMS (EI) *m*/*z* calcd C₂₈H₂₁N₃O₃ (M⁺) 447.1583, found 447.1586.

3-((diphenylmethylene)amino)-3-(4-(trifluoromethyl)benzyl)indolin-2-one (9d)

¹**H NMR (400 MHz, DMSO-***d*₆**)** δ : 9.68 (s, 1H), 7.49 (dt, *J* = 14.7, 7.1 Hz, 6H), 7.39 (t, *J* = 7.4 Hz, 2H), 7.21 (dd, *J* = 12.5, 7.7 Hz, 3H), 7.02 (t, *J* = 7.5 Hz, 3H), 6.92 (d, *J* = 7.1 Hz, 1H), 6.86 (t, *J* = 7.4 Hz, 1H), 6.45 (s, 1H), 6.24 (d, *J* = 7.7 Hz, 1H), 3.70 (d, *J* = 12.6 Hz, 1H), 3.37 (d, *J* = 12.5 Hz, 1H).

¹³C NMR (101 MHz, DMSO-d₆) δ: 178.15, 170.31, 141.73, 140.90, 140.08, 136.30, 133.11, 131.89, 131.07, 128.83, 128.66, 128.52, 128.31, 127.83, 127.74, 127.52, 127.43, 124.53, 124.49, 124.45, 121.68, 109.74, 70.55, 47.09.

HRMS (EI) *m*/*z* calcd C₂₉H₂₁F₃N₂O (M⁺) 470.1606, found 470.1602.

4-((3-((diphenylmethylene)amino)-2-oxoindolin-3-yl)methyl)benzonitrile (9e)

¹**H NMR (400 MHz, DMSO-***d*₆**)** δ : 9.64 (s, 1H), 7.51 (d, *J* = 7.3 Hz, 2H), 7.45 (t, *J* = 7.2 Hz, 1H), 7.38 (t, *J* = 7.4 Hz, 2H), 7.24 – 7.15 (m, 3H), 7.00 (dd, *J* = 15.0, 7.9 Hz, 5H), 6.92 (d, *J* = 7.1 Hz, 1H), 6.85 (t, *J* = 7.4 Hz, 1H), 6.44 (s, 2H), 6.23 (d, *J* = 7.7 Hz, 1H), 3.62 (d, *J* = 12.7 Hz, 1H), 3.27 (d, *J* = 12.7 Hz, 1H).

¹³C NMR (101 MHz, DMSO-d₆) δ: 178.26, 170.16, 141.79, 140.11, 136.35, 134.92, 133.21, 132.83, 131.69, 131.04, 128.74, 128.65, 128.51, 128.29, 127.84, 127.70, 127.51, 124.45, 121.62, 109.69, 70.68, 46.72.

HRMS (EI) *m*/*z* calcd C₂₉H₂₁N₃O (M⁺) 427.1685, found 427.1688.

3-((diphenylmethylene)amino)-3-(4-ethoxybenzyl)indolin-2-one (9f)

¹**H NMR (400 MHz, DMSO-***d*₆) δ : 9.56 (s, 1H), 7.50 (d, *J* = 7.6 Hz, 2H), 7.48-7.41 (m, 1H), 7.38 (t, *J* = 7.3 Hz, 2H), 7.19 (t, *J* = 7.4 Hz, 1H), 7.00 (dd, *J* = 16.8, 9.2 Hz, 3H), 6.91 (d, *J* = 7.3 Hz, 1H), 6.84 (t, *J* = 8.3 Hz, 3H), 6.64 (d, *J* = 7.6 Hz, 2H), 6.45 (s, 2H), 6.20 (d, *J* = 7.7 Hz, 1H), 3.89 (q, *J* = 6.8 Hz, 2H), 3.57 (d, *J* = 12.8 Hz, 1H), 3.20 (d, *J* = 12.9 Hz, 1H), 1.26 (t, *J* = 6.9 Hz, 3H).

¹³C NMR (101 MHz, DMSO-d₆) δ: 178.50, 169.85, 157.57, 141.90, 140.22, 136.43, 133.57, 131.98, 130.96, 128.63, 128.53, 128.47, 128.23, 127.84, 127.56, 127.48, 124.42, 121.46, 113.56, 109.57, 70.94, 63.13, 46.78, 15.14.

HRMS (EI) *m*/*z* calcd C₃₀H₂₆N₂O₂ (M⁺) 446.1994, found 446.1996.

3-([1,1'-biphenyl]-4-ylmethyl)-3-((diphenylmethylene)amino)indolin-2-one (9g)

¹**H NMR (400 MHz, DMSO-** d_6) δ : 9.63 (s, 1H), 7.60 (d, J = 7.4 Hz, 2H), 7.53 (d, J = 7.2 Hz, 2H), 7.50-7.35 (m, 7H), 7.31 (t, J = 7.3 Hz, 1H), 7.20 (t, J = 7.4 Hz, 1H), 7.16-6.91 (m, 6H), 6.86 (t, J = 7.4 Hz, 1H), 6.46 (s, 2H), 6.22 (d, J = 7.7 Hz, 1H), 3.67 (d, J = 12.7 Hz, 1H), 3.31 (d, J = 12.7 Hz, 1H).

¹³C NMR (101 MHz, DMSO-d₆) δ: 178.39, 170.01, 141.89, 140.20, 140.15, 138.44, 136.39, 135.29, 133.48, 131.70, 131.02, 129.34, 128.66, 128.51, 128.27, 127.85, 127.71, 127.51, 126.85, 125.88, 124.50, 121.57, 109.67, 70.79, 47.18.

HRMS (EI) *m*/*z* calcd C₃₄H₂₆N₂O (M⁺) 478.2045, found 478.2044.

3-((diphenylmethylene)amino)-3-(4-ethylbenzyl)indolin-2-one (9h)

¹**H NMR (400 MHz, DMSO-***d*₆**)** δ : 9.57 (s, 1H), 7.51 (d, *J* = 7.8 Hz, 2H), 7.45 (t, *J* = 7.1 Hz, 1H), 7.37 (t, *J* = 7.5 Hz, 2H), 7.19 (t, *J* = 7.3 Hz, 1H), 7.00 (dd, *J* = 16.4, 8.8 Hz, 3H), 6.88 (ddd, *J* = 18.6, 16.6, 7.7 Hz, 6H), 6.43 (s, 2H), 6.20 (d, *J* = 7.7 Hz, 1H), 3.60 (d, *J* = 12.7 Hz, 1H), 3.23 (d, *J* = 12.7 Hz, 1H), 2.50-2.44 (m, 2H), 1.09 (t, *J* = 7.5 Hz, 3H).

¹³C NMR (101 MHz, DMSO-d₆) δ: 178.44, 169.85, 142.04, 141.89, 140.22, 136.40, 133.52, 133.05, 131.00, 128.62, 128.56, 128.48, 128.23, 127.84, 127.48, 127.12, 124.44, 121.45, 109.60, 70.83, 47.23, 28.15, 15.90.

HRMS (EI) *m*/*z* calcd C₃₀H₂₆N₂O (M⁺) 430.2045, found 430.2046.

3-((diphenylmethylene)amino)-3-(4-methylbenzyl)indolin-2-one (9i)

¹**H NMR (400 MHz, DMSO-***d*₆) δ : 9.55 (s, 1H), 7.51 (d, *J* = 7.4 Hz, 2H), 7.45 (t, *J* = 7.0 Hz, 1H), 7.37 (t, *J* = 7.4 Hz, 2H), 7.19 (t, *J* = 7.3 Hz, 1H), 7.00 (dd, *J* = 17.2, 9.6 Hz, 3H), 6.91 (dd, *J* = 12.7, 7.6 Hz, 3H), 6.84 (t, *J* = 7.0 Hz, 3H), 6.44 (s, 2H), 6.20 (d, *J* = 7.7 Hz, 1H), 3.60 (d, *J* = 12.7 Hz, 1H), 3.24 (d, *J* = 12.7 Hz, 1H), 2.18 (s, 3H).

¹³C NMR (101 MHz, DMSO-d₆) δ: 178.42, 169.85, 141.89, 140.21, 136.41, 135.71, 133.50, 132.72, 130.97, 130.91, 128.62, 128.56, 128.47, 128.36, 128.23, 127.84, 127.48, 124.43, 121.46, 109.60, 70.88, 47.24, 21.09.

HRMS (EI) m/z calcd $C_{29}H_{24}N_2O$ (M⁺) 416.1889, found 416.1885.

3-(4-chlorobenzyl)-3-((diphenylmethylene)amino)indolin-2-one (9j)

S21

¹**H NMR (400 MHz, DMSO-***d*₆) δ : 9.63 (s, 1H), 7.50 (d, J = 7.4 Hz, 2H), 7.45 (t, J = 7.2 Hz, 1H), 7.38 (t, J = 7.4 Hz, 2H), 7.19 (t, J = 9.1 Hz, 3H), 7.00 (dd, J = 16.0, 8.0 Hz, 5H), 6.92 (d, J = 7.2 Hz, 1H), 6.85 (t, J = 7.4 Hz, 1H), 6.43 (s, 2H), 6.22 (d, J = 7.7 Hz, 1H), 3.61 (d, J = 12.7 Hz, 1H), 3.27 (d, J = 12.7 Hz, 1H).

¹³C NMR (101 MHz, DMSO-d₆) δ: 178.25, 170.16, 141.78, 140.11, 136.34, 134.92, 133.21, 132.83, 131.68, 131.05, 130.10, 129.06, 128.74, 128.66, 128.50, 128.30, 127.84, 127.70, 127.51, 124.45, 121.62, 109.69, 70.68, 46.71.

HRMS (EI) *m*/*z* calcd C₂₈H₂₁CIN₂O (M⁺) 436.1342, found 436.1344.

3-(4-bromobenzyl)-3-((diphenylmethylene)amino)indolin-2-one (9k)

¹**H NMR (400 MHz, DMSO-***d*₆) δ : 9.64 (s, 1H), 7.51 (d, *J* = 7.3 Hz, 2H), 7.45 (t, *J* = 7.2 Hz, 1H), 7.38 (t, *J* = 7.4 Hz, 2H), 7.31 (d, *J* = 8.3 Hz, 2H), 7.20 (t, *J* = 7.4 Hz, 1H), 7.01 (t, *J* = 7.6 Hz, 3H), 6.93 (d, *J* = 8.2 Hz, 3H), 6.85 (t, *J* = 7.4 Hz, 1H), 6.44 (s, 2H), 6.23 (d, *J* = 7.7 Hz, 1H), 3.60 (d, *J* = 12.7 Hz, 1H), 3.26 (d, *J* = 12.7 Hz, 1H).

¹³C NMR (101 MHz, DMSO-*d*₆) δ: 178.24, 170.17, 141.78, 140.11, 136.34, 135.33, 133.23, 133.20, 131.04, 130.61, 130.10, 129.05, 128.75, 128.65, 128.51, 128.29, 127.84, 127.51, 124.45, 121.62, 120.30, 109.70, 70.61, 46.78.

HRMS (EI) *m*/*z* calcd C₂₈H₂₁BrN₂O (M⁺) 480.0837, found 480.0839.

3-((diphenylmethylene)amino)-3-(naphthalen-1-ylmethyl)indolin-2-one (9)

¹**H NMR (400 MHz, DMSO-***d*₆) δ : 9.72 (s, 1H), 8.12 (d, *J* = 8.3 Hz, 1H), 7.83 (d, *J* = 7.8 Hz, 1H), 7.76 (d, *J* = 8.0 Hz, 1H), 7.48-7.23 (m, 9H), 7.18 (t, *J* = 7.4 Hz, 1H), 7.13-6.88 (m, 3H), 6.66 (d, *J* = 4.2 Hz, 2H), 6.36 (d, *J* = 79.4 Hz, 2H), 6.25 (d, *J* = 7.7 Hz, 1H), 4.07 (d, *J* = 13.5 Hz, 1H), 3.68 (d, *J* = 13.5 Hz, 1H).

¹³C NMR (101 MHz, DMSO-*d*₆) δ: 179.00, 170.11, 141.71, 140.21, 136.33, 133.68, 133.60, 133.36, 132.64, 130.93, 129.85, 128.61, 128.50, 128.19, 127.93, 127.64, 127.44, 125.80, 125.53, 125.49, 125.10, 125.02, 121.24, 109.67, 70.83, 42.75. HRMS (EI) *m/z* calcd $C_{32}H_{24}N_2O$ (M⁺) 452.1889, found 452.1906.

3-((diphenylmethylene)amino)-3-(furan-2-ylmethyl)indolin-2-one (9m)

¹**H NMR (400 MHz, DMSO-***d*₆) δ : 9.76 (s, 1H), 7.51 (d, *J* = 7.5 Hz, 2H), 7.48-7.41 (m, 1H), 7.38 (dd, *J* = 13.2, 5.3 Hz, 3H), 7.21 (t, *J* = 7.2 Hz, 1H), 7.15-6.96 (m, 3H), 6.90-6.79 (m, 2H), 6.49 (s, 2H), 6.34-6.24 (m, 2H), 5.98 (s, 1H), 3.66 (d, *J* = 14.3 Hz, 1H), 3.28 (d, *J* = 14.3 Hz, 1H).

¹³C NMR (101 MHz, DMSO-d₆) δ: 178.19, 170.13, 151.02, 142.00, 141.94, 140.07, 136.19, 133.49, 131.04, 130.10, 129.06, 128.74, 128.63, 128.50, 128.32, 127.79, 127.53, 124.14, 121.70, 110.86, 109.70, 108.53, 69.39.

HRMS (EI) *m*/*z* calcd C₂₆H₂₀N₂O₂ (M⁺) 392.1525, found 392.1529.

3-((diphenylmethylene)amino)-3-(thiophen-2-ylmethyl)indolin-2-one (9n)

¹**H NMR (400 MHz, DMSO-***d*₆) δ : 9.79 (s, 1H), 7.60 (d, *J* = 7.2 Hz, 2H), 7.46 (t, *J* = 7.1 Hz, 1H), 7.40 (t, *J* = 7.3 Hz, 2H), 7.32 (d, *J* = 5.1 Hz, 1H), 7.21 (t, *J* = 7.4 Hz, 1H), 7.02 (t, *J* = 7.7 Hz, 3H), 6.86 (dd, *J* = 5.0, 3.5 Hz, 1H), 6.77 (t, *J* = 7.5 Hz, 1H), 6.64 (t, *J* = 5.7 Hz, 2H), 6.38 (d, *J* = 47.7 Hz, 2H), 6.31 (d, *J* = 7.7 Hz, 1H), 3.74 (d, *J* = 14.0 Hz, 1H), 3.33 (d, *J* = 14.1 Hz, 1H).

¹³C NMR (101 MHz, DMSO-d₆) δ: 178.25, 170.44, 141.98, 139.92, 138.04, 136.15, 133.14, 131.13, 128.80, 128.65, 128.30, 127.83, 127.54, 126.23, 126.00, 124.25, 121.54, 109.79, 69.88, 41.87.

HRMS (EI) *m*/*z* calcd C₂₆H₂₀N₂OS (M⁺) 408.1296, found 408.1298.

3-((diphenylmethylene)amino)-3-methylindolin-2-one (9o)

¹H NMR (400 MHz, DMSO- d_6) δ : 9.81 (s, 1H), 7.47 (d, J = 7.6 Hz, 2H), 7.43 (t, J = 7.2 Hz, 1H), 7.35 (t, J = 7.5 Hz, 2H), 7.24 (t, J = 7.4 Hz, 1H), 7.16 (d, J = 7.3 Hz, 1H), 7.08 (t, J = 7.6 Hz, 3H), 6.90 (t, J = 7.5 Hz, 1H), 6.43 (d, J = 7.7 Hz, 3H), 1.71 (s, 3H).

¹³C NMR (101 MHz, DMSO-*d*₆) δ: 179.65, 169.90, 141.24, 140.04, 136.28, 136.22, 130.92, 128.57, 128.51, 128.42, 128.37, 127.90, 127.54, 123.26, 122.03, 109.90, 66.20, 29.35.
HRMS (EI) *m/z* calcd C₂₂H₁₈N₂O (M⁺) 326.1419, found 326.1420.

3-benzyl-3-((diphenylmethylene)amino)-5-fluoroindolin-2-one (9p)

¹**H NMR (400 MHz, DMSO-***d*₆) δ : 9.66 (s, 1H), 7.53 (d, *J* = 7.3 Hz, 2H), 7.46 (t, *J* = 7.2 Hz, 1H), 7.39 (t, *J* = 7.4 Hz, 2H), 7.20 (t, *J* = 7.4 Hz, 1H), 7.10 (t, *J* = 8.5 Hz, 5H), 7.00 (d, *J* = 2.8 Hz, 2H), 6.83-6.74 (m, 2H), 6.55 (s, 2H), 6.14 (dd, *J* = 8.3, 4.3 Hz, 1H), 3.67 (d, *J* = 12.7 Hz, 1H), 3.30 (d, *J* = 12.7 Hz, 1H).

¹³C NMR (101 MHz, DMSO-d₆) δ: 178.39, 170.50, 159.22, 156.87, 140.02, 138.02, 136.36, 135.57, 134.64, 134.56, 131.13, 130.98, 130.10, 129.06, 128.66, 128.57, 128.37, 127.83, 127.60, 127.00, 114.93, 114.69, 112.39, 112.15, 110.22, 110.14, 71.17, 47.42.
HRMS (EI) *m/z* calcd C₂₈H₂₁FN₂O (M⁺) 420.1638, found 420.1642.

3-benzyl-5-chloro-3-((diphenylmethylene)amino)indolin-2-one (9q)

¹H NMR (400 MHz, DMSO-*d*₆) δ: 9.78 (s, 1H), 7.54 (d, *J* = 7.3 Hz, 2H), 7.47 (t, *J* = 7.2 Hz, 1H), 7.39 (t, *J* = 7.4 Hz, 2H), 7.21 (t, *J* = 7.4 Hz, 1H), 7.18-6.95 (m, 8H), 6.90 (d, *J* = 1.8 Hz, 1H), 6.50 (s, 2H), 6.19 (d, *J* = 8.3 Hz, 1H), 3.68 (d, *J* = 12.7 Hz, 1H), 3.28 (d, *J* = 12.7 Hz, 1H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ: 178.16, 170.53, 140.71, 139.98, 136.34, 135.54, 135.03, 131.16, 131.02, 128.67, 128.59, 128.45, 128.37, 127.83, 127.64, 127.05, 125.47, 124.70, 110.91, 70.91, 47.30.

HRMS (EI) *m*/*z* calcd C₂₈H₂₁CIN₂O (M⁺) 436.1342, found 436.1347.

3-benzyl-5-bromo-3-((diphenylmethylene)amino)indolin-2-one (9r)

¹H NMR (400 MHz, DMSO- d_6) δ : 9.78 (s, 1H), 7.53 (d, J = 7.3 Hz, 2H), 7.47 (t, J = 7.1 Hz, 1H), 7.40 (t, J = 7.4 Hz, 2H), 7.26-7.01 (m, 7H), 7.02-6.96 (m, 3H), 6.51 (s, 2H), 6.15 (d, J = 8.3 Hz, 1H), 3.67 (d, J = 12.7 Hz, 1H), 3.26 (d, J = 12.7 Hz, 1H).

¹³C NMR (101 MHz, DMSO-d₆) δ: 178.03, 170.52, 141.09, 139.98, 136.33, 135.56, 135.44, 131.21, 131.05, 128.69, 128.59, 128.47, 127.83, 127.65, 127.45, 127.06, 113.08, 111.46, 70.84, 47.26.

HRMS (EI) *m*/*z* calcd C₂₈H₂₁BrN₂O (M⁺) 480.0837, found 480.0844.

Characterization of 3-aminoindolin-2-ones (5)

3-Amino-3-benzylindolin-2-one (5a): 83% yield. White solid.

¹**H NMR (400 MHz, DMSO-** d_6) δ : 10.02 (s, 1H), 7.24 (d, J = 7.3 Hz, 1H), 7.13-6.99 (m, 4H), 6.93 (t, J = 7.4 Hz, 1H), 6.84 (dd, J = 6.4, 2.7 Hz, 2H), 6.59 (d, J = 7.7 Hz, 1H), 2.99 (dd, J = 42.5, 12.7 Hz, 2H), 2.21 (s, 2H).

¹³C NMR (101 MHz, DMSO-*d*₆) δ: 181.37, 142.14, 136.27, 132.70, 130.34, 128.68, 127.86, 126.68, 124.76, 121.55, 109.58, 62.96, 45.37.

HRMS (ESI) *m*/*z* calcd C₁₅H₁₅N₂O [M+H]⁺ 239.1179, found 239.1178.

S25

3-Amino-3-(4-fluorobenzyl)indolin-2-one (5b): 75% yield. White solid.

¹H NMR (400 MHz, DMSO- d_6) δ : 10.03 (s, 1H), 7.23 (d, J = 7.3 Hz, 1H), 7.10 (t, J = 7.6 Hz, 1H), 6.99-6.80 (m, 5H), 6.61 (d, J = 7.7 Hz, 1H), 2.98 (dd, J = 46.4, 12.8 Hz, 2H), 2.21 (s, 2H). ¹³C NMR (101 MHz, DMSO- d_6) δ : 181.34, 162.58, 160.17, 142.09, 132.51, 132.44, 132.41, 132.14, 132.06, 128.78, 124.77, 121.62, 114.69, 114.48, 109.62, 62.93, 44.36.

¹⁹F NMR (376 MHz, DMSO-d₆) δ: -116.80.

HRMS (ESI) m/z calcd C₁₅H₁₄N₂OF [M+H]⁺ 257.1085, found 257.1084.

3-Amino-3-(4-nitrobenzyl)indolin-2-one (5c): 64% yield. White solid.

¹H NMR (400 MHz, DMSO- d_6) δ : 10.14 (s, 1H), 7.97 (d, J = 8.3 Hz, 2H), 7.22 (t, J = 8.6 Hz, 1H), 7.19-7.07 (m, 3H), 6.95 (t, J = 7.4 Hz, 1H), 6.65 (d, J = 7.6 Hz, 1H), 3.14 (dd, J = 56.8, 12.5 Hz, 2H), 2.37 (s, 2H).

¹³C NMR (101 MHz, DMSO-d₆) δ: 181.00, 146.61, 144.66, 141.93, 132.04, 131.72, 129.00, 124.86, 122.91, 121.78, 109.79, 62.81, 44.74.

HRMS (ESI) m/z calcd $C_{15}H_{14}N_3O_3$ [M+H]⁺ 284.1030, found 284.1030.

3-Amino-3-(4-(trifluoromethyl)benzyl)indolin-2-one (5d): 70% yield. White solid.

¹**H NMR (400 MHz, DMSO-***d*₆) δ : 10.09 (s, 1H), 7.45 (d, *J* = 8.0 Hz, 2H), 7.25 (d, *J* = 7.3 Hz, 1H), 7.10 (dd, *J* = 19.3, 7.8 Hz, 3H), 6.95 (t, *J* = 7.5 Hz, 1H), 6.63 (d, *J* = 7.7 Hz, 1H), 3.09 (dd, *J* = 50.5, 12.6 Hz, 2H), 2.28 (s, 2H).

¹³C NMR (101 MHz, DMSO-d₆) δ: 181.10, 142.00, 141.22, 132.28, 131.16, 128.92, 127.59, 127.28, 126.15, 124.80, 124.67, 124.64, 123.44, 121.71, 109.69, 62.82, 44.90.
¹⁹F NMR (376 MHz, DMSO-d₆) δ: -60.81.

HRMS (ESI) m/z calcd C₁₆H₁₄N₂OF₃ [M+H]⁺ 307.1053, found 307.1052.

4-((3-Amino-2-oxoindolin-3-yl)methyl)benzonitrile (5e): 74% yield. White solid.

¹H NMR (400 MHz, DMSO- d_6) δ : 10.06 (s, 1H), 7.24 (d, J = 7.3 Hz, 1H), 7.11 (t, J = 9.1 Hz, 3H), 6.94 (t, J = 7.4 Hz, 1H), 6.85 (d, J = 8.3 Hz, 2H), 6.63 (d, J = 7.7 Hz, 1H), 2.99 (dd, J = 47.3, 12.7 Hz, 2H), 2.24 (s, 2H).

¹³C NMR (101 MHz, DMSO-*d*₆) δ: 181.24, 142.06, 135.29, 132.40, 132.14, 131.51, 128.84, 127.83, 124.78, 121.67, 109.67, 62.88, 44.51.

HRMS (ESI) *m*/*z* calcd C₁₆H₁₄N₃O [M+H]⁺ 264.1131, found 264.1131.

3-Amino-3-(4-ethoxybenzyl)indolin-2-one (5f): 82% yield. White solid.

¹**H NMR (400 MHz, DMSO-***d*₆) δ : 9.99 (s, 1H), 7.24 (d, *J* = 7.3 Hz, 1H), 7.09 (t, *J* = 7.6 Hz, 1H), 6.93 (t, *J* = 7.4 Hz, 1H), 6.73 (d, *J* = 8.5 Hz, 2H), 6.60 (t, *J* = 7.8 Hz, 3H), 3.86 (q, *J* = 6.9 Hz, 2H), 2.92 (dd, *J* = 41.6, 12.9 Hz, 2H), 2.16 (s, 2H), 1.24 (t, *J* = 6.9 Hz, 3H).

¹³C NMR (101 MHz, DMSO-*d*₆) δ: 181.50, 157.43, 142.18, 132.84, 131.30, 128.64, 127.98, 124.71, 121.55, 113.71, 109.56, 63.01, 44.55, 15.13.

HRMS (ESI) *m*/*z* calcd C₁₇H₁₉N₂O₂ [M+H]⁺ 283.1441, found 283.1440.

3-([1,1'-Biphenyl]-4-ylmethyl)-3-aminoindolin-2-one (5g): 84% yield. White solid.

¹H NMR (400 MHz, DMSO- d_6) δ : 10.06 (s, 1H), 7.57 (d, J = 7.5 Hz, 2H), 7.39 (dd, J = 12.0, 5.2 Hz, 4H), 7.35 – 7.25 (m, 2H), 7.11 (t, J = 7.6 Hz, 1H), 6.96 (dd, J = 10.5, 8.0 Hz, 3H), 6.63 (d, J = 7.6 Hz, 1H), 3.05 (dd, J = 45.0, 12.7 Hz, 2H), 2.26 (s, 2H).

¹³C NMR (101 MHz, DMSO-d₆) δ: 181.34, 142.17, 140.12, 138.30, 135.63, 132.74, 130.98,

129.32, 128.78, 127.69, 126.82, 126.05, 124.80, 121.66, 109.65, 62.92, 44.93. HRMS (ESI) m/z calcd $C_{21}H_{19}N_2O$ [M+H]⁺ 315.1492, found 315.1490.

3-Amino-3-(4-ethylbenzyl)indolin-2-one (5h): 78% yield. White solid.

¹H NMR (400 MHz, CDCl₃) δ: 7.74 (s, 1H), 7.29 (s, 1H), 7.19 (t, J = 7.6 Hz, 1H), 7.05 (t, J = 7.4 Hz, 1H), 6.93 (d, J = 7.5 Hz, 2H), 6.82 (d, J = 7.2 Hz, 2H), 6.71 (d, J = 7.6 Hz, 1H), 3.09 (dd, J = 45.7, 12.7 Hz, 2H), 2.53 (q, J = 7.5 Hz, 2H), 2.05 (s, 2H), 1.15 (t, J = 7.5 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ: 182.59, 142.64, 140.54, 131.85, 131.60, 130.23, 128.94, 127.26, 124.65, 122.47, 110.08, 62.79, 44.70, 28.37, 15.40. HRMS (ESI) *m/z* calcd C₁₇H₁₉N₂O [M+H]⁺ 267.1492, found 267.1491.

3-Amino-3-(4-methylbenzyl)indolin-2-one (5i): 79% yield. White solid.

¹H NMR (400 MHz, CDCI₃) δ : 8.79 (s, 1H), 7.29-7.21 (m, 1H), 7.17 (t, J = 7.6 Hz, 1H), 7.03 (t, J = 7.5 Hz, 1H), 6.83 (dd, J = 32.9, 7.7 Hz, 4H), 6.72 (d, J = 7.7 Hz, 1H), 3.04 (dd, J = 43.1, 13.0 Hz, 2H), 2.19 (s, 3H), 1.96 (s, 2H).

¹³C NMR (101 MHz, CDCl₃) δ: 182.52, 140.54, 136.28, 131.59, 131.55, 130.12, 128.95, 128.48, 124.62, 122.48, 110.06, 62.85, 44.72, 21.04.

HRMS (ESI) m/z calcd $C_{16}H_{17}N_2O [M+H]^+ 253.1335$, found 253.1334.

3-Amino-3-(4-chlorobenzyl)indolin-2-one (5j): 80% yield. White solid.

¹H NMR (400 MHz, DMSO- d_6) δ : 10.06 (s, 1H), 7.24 (d, J = 7.3 Hz, 1H), 7.11 (t, J = 9.0 Hz, 3H), 6.94 (t, J = 7.4 Hz, 1H), 6.85 (d, J = 8.3 Hz, 2H), 6.63 (d, J = 7.7 Hz, 1H), 2.99 (dd, J = 47.3, 12.7 Hz, 2H), 2.24 (s, 2H).

¹³C NMR (101 MHz, DMSO-d₆) δ: 181.24, 142.06, 135.29, 132.40, 132.14, 131.50, 128.84,

127.83, 124.78, 121.67, 109.67, 62.88, 44.51.

HRMS (ESI) *m*/*z* calcd C₁₅H₁₄N₂OCI [M+H]⁺ 273.0789, found 273.0789.

3-Amino-3-(4-bromobenzyl)indolin-2-one (5k): 82% yield. White solid.

¹H NMR (400 MHz, DMSO- d_6) δ : 10.04 (s, 1H), 7.25 (t, J = 7.9 Hz, 3H), 7.10 (t, J = 7.4 Hz, 1H), 6.94 (t, J = 7.4 Hz, 1H), 6.79 (d, J = 8.3 Hz, 2H), 6.62 (d, J = 7.7 Hz, 1H), 2.96 (dd, J = 47.2, 12.7 Hz, 2H), 2.27 (s, 2H).

¹³C NMR (101 MHz, DMSO-*d*₆) δ: 181.18, 142.05, 135.71, 132.54, 132.38, 130.76, 128.84, 124.78, 121.68, 120.07, 109.67, 62.81, 44.55.

HRMS (ESI) *m*/*z* calcd C₁₅H₁₄N₂OBr [M+H]⁺ 317.0284, found 317.0282.

3-Amino-3-(naphthalen-1-ylmethyl)indolin-2-one (5I): 78% yield. White solid.

¹H NMR (400 MHz, DMSO-*d*₆) δ: 10.03 (s, 1H), 8.12-8.02 (m, 1H), 7.82-7.73 (m, 1H), 7.67 (d, J = 8.1 Hz, 1H), 7.42-7.33 (m, 2H), 7.27-7.16 (m, 2H), 7.10 (d, J = 7.0 Hz, 1H), 7.01 (t, J = 7.5 Hz, 1H), 6.79 (t, J = 7.5 Hz, 1H), 6.56 (d, J = 7.7 Hz, 1H), 3.53 (s, 2H), 2.32 (s, 2H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ: 181.70, 142.04, 133.58, 132.96, 132.76, 132.63, 128.64, 128.55, 127.41, 125.59, 125.58, 125.21, 125.16, 121.39, 109.52, 63.05. HRMS (ESI) *m/z* calcd C₁₉H₁₇N₂O [M+H]⁺ 289.1335, found 289.1334.

3-Amino-3-(furan-2-ylmethyl)indolin-2-one (5m): 54% yield. Light yellow solid. **¹H NMR (400 MHz, CDCl₃)** δ: 9.10 (s, 1H), 7.31-7.17 (m, 2H), 7.14 (d, *J* = 7.3 Hz, 1H), 7.01 (t, *J* = 7.5 Hz, 1H), 6.84 (d, *J* = 7.7 Hz, 1H), 6.18 (s, 1H), 5.90 (d, *J* = 2.5 Hz, 1H), 3.14 (dd, *J* =

S29

42.9, 14.6 Hz, 2H), 2.04 (s, 2H).

¹³C NMR (101 MHz, CDCl₃) δ: 182.21, 149.98, 141.77, 140.47, 131.56, 129.09, 124.41, 122.66, 110.29, 110.20, 108.38, 61.43, 37.28.

HRMS (ESI) *m*/*z* calcd C₁₃H₁₃N₂O₂ [M+H]⁺ 229.0972, found 229.0971.

3-Amino-3-(thiophen-2-ylmethyl)indolin-2-one (5n): 80% yield. White solid.

¹H NMR (400 MHz, CDCl₃) δ: 7.55 (t, *J* = 21.3 Hz, 1H), 7.30 (d, *J* = 7.2 Hz, 1H), 7.23 (d, *J* = 7.6 Hz, 1H), 7.08 (t, *J* = 7.5 Hz, 1H), 7.03 (d, *J* = 4.9 Hz, 1H), 6.78 (t, *J* = 6.1 Hz, 2H), 6.63 (s, 1H), 3.45-3.25 (m, 2H), 1.86 (s, 2H).

¹³C NMR (101 MHz, CDCl₃) δ: 181.85, 140.71, 136.38, 131.07, 129.35, 127.47, 126.34, 124.76, 124.61, 122.81, 110.09, 62.38, 39.20.

HRMS (ESI) *m*/*z* calcd C₁₃H₁₃N₂OS [M+H]⁺ 245.0743, found 245.0742.

3-Amino-3-methylindolin-2-one (50): 86% yield. Yellow solid.

¹**H NMR (400 MHz, CDCI₃)** δ : 8.32 (s, 1H), 7.40 (d, J = 7.3 Hz, 1H), 7.24 (d, J = 7.7 Hz, 1H), 7.08 (t, J = 7.5 Hz, 1H), 6.92 (d, J = 7.7 Hz, 1H), 1.84 (s, 2H), 1.49 (s, 3H).

¹³C NMR (101 MHz, DMSO-d₆) δ: 182.64, 141.55, 135.40, 128.58, 123.80, 121.93, 109.89, 58.06, 26.26.

HRMS (ESI) m/z calcd C₉H₁₁N₂O [M+H]⁺ 163.0866, found 163.0865.

3-Amino-3-benzyl-5-fluoroindolin-2-one (5p): 78% yield. White solid.

¹**H NMR (400 MHz, DMSO-** d_6) δ : 10.05 (s, 1H), 7.13 (dd, J = 8.4, 2.6 Hz, 1H), 7.11-7.03 (m, 3H), 6.89 (ddd, J = 8.0, 7.5, 2.5 Hz, 3H), 6.57 (dd, J = 8.4, 4.4 Hz, 1H), 3.02 (dd, J = 41.8, 12.7 Hz, 2H), 2.34 (s, 2H).

¹³C NMR (101 MHz, DMSO-d₆) δ: 181.26, 159.44, 157.09, 138.23, 138.22, 136.01, 134.77,

134.70, 130.30, 127.96, 126.79, 114.92, 114.69, 112.67, 112.43, 110.25, 110.17, 63.57, 63.56, 45.23.

¹⁹F NMR (376 MHz, DMSO-*d*₆) δ: -122.22.

HRMS (ESI) m/z calcd C₁₅H₁₄N₂OF [M+H]⁺ 257.1085, found 257.1084.

3-Amino-3-benzyl-5-chloroindolin-2-one (5q): 79% yield. White solid.

¹H NMR (400 MHz, DMSO-*d*₆) δ: 10.13 (s, 1H), 7.29 (d, *J* = 2.0 Hz, 1H), 7.12 (dd, *J* = 8.2, 2.1 Hz, 1H), 7.11-7.04 (m, 3H), 6.86 (dd, *J* = 6.2, 2.8 Hz, 2H), 6.59 (d, *J* = 8.2 Hz, 1H), 3.01 (dd, *J* = 48.5, 12.7 Hz, 2H), 2.31 (s, 2H).

¹³C NMR (101 MHz, DMSO-d₆) δ: 181.00, 140.99, 135.96, 135.05, 130.30, 128.43, 127.98, 126.83, 125.64, 125.00, 110.92, 63.36, 45.17.

HRMS (ESI) m/z calcd C₁₅H₁₄N₂OCI [M+H]⁺ 273.0789, found 273.0788.

3-Amino-3-benzyl-5-bromoindolin-2-one (5r): 81% yield. White solid.

¹H NMR (400 MHz, DMSO-*d*₆) δ: 10.14 (s, 1H), 7.40 (s, 1H), 7.25 (dd, *J* = 8.2, 1.9 Hz, 1H), 7.17-6.98 (m, 3H), 6.95-6.78 (m, 2H), 6.55 (d, *J* = 8.2 Hz, 1H), 3.00 (dd, *J* = 50.3, 12.7 Hz, 2H), 2.31 (s, 2H).

¹³C NMR (101 MHz, DMSO-d₆) δ: 180.87, 141.40, 135.96, 135.46, 131.28, 130.32, 127.97, 127.75, 126.84, 113.35, 111.48, 63.33, 45.18.

HRMS (ESI) *m*/*z* calcd C₁₅H₁₄N₂OBr [M+H]⁺ 317.0284, found 317.0282.

General procedure for the amination of aldehydes (6)

To a mixture of aldehydes **6** (1 mmol), TBAI (36.9 mg, 0.1 mmol, 10 mmol%) and benzophenone imine **2** (362.2 mg, 2 mmol) was added TBHP (70% in water, 386 mg, 3 mmol)

at room temperature. After stirring at 100 °C for 24 h, the reaction mixture was poured into saturated $Na_2S_2O_3$ (aqueous solution, 5 mL), extracted with ethyl acetate (3×5 mL) and washed with brine. The combined organic layers were dried over anhydrous Na_2SO_4 and solvent was removed in vacuo. The residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate as eluent) to afford analytically pure primary amine **7**.

Characterization of amides (7)

 NH_2

Benzamide (7a): 81% yield. White solid. ¹**H NMR (400 MHz, DMSO-***d*₆) δ: 8.04 (s, 1H), 7.92 (d, *J* = 7.9 Hz, 2H), 7.58-7.50 (m, 1H), 7.46 (dd, *J* = 11.4, 4.1 Hz, 3H).

¹³C NMR (101 MHz, DMSO-*d*₆) δ: 168.46, 134.71, 131.69, 128.67, 127.94.

HRMS (ESI) *m*/z calcd C₇H₈NO [M+H]⁺ 122.0600, found 122.0601.

 NH_2

4-Methylbenzamide (7b): 79% yield. White solid.

¹**H NMR (400 MHz, CDCl₃)** δ: 7.72 (d, *J* = 8.1 Hz, 2H), 7.26 (d, *J* = 8.1 Hz, 2H), 6.02 (d, *J* = 105.1 Hz, 2H), 2.41 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ: 169.62, 142.61, 130.38, 129.30, 127.42, 21.51. HRMS (ESI) *m*/z calcd C₈H₁₀NO [M+H]⁺ 136.0757, found 136.0756.

NH₂

2-Methylbenzamide (7c): 81% yield. White solid.

¹**H NMR (400 MHz, CDCl₃)** δ: 7.47 (d, *J* = 7.6 Hz, 1H), 7.35 (t, *J* = 7.5 Hz, 1H), 7.26-7.19 (m, 2H), 5.97 (s, 2H), 2.51 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ: 172.41, 136.31, 135.22, 131.21, 130.29, 126.98, 125.75, 19.99.

HRMS (ESI) *m*/*z* calcd C₈H₁₀NO [M+H]⁺ 136.0757, found 136.0756.

4-Ethylbenzamide (7d): 83% yield. White solid.

¹H NMR (400 MHz, CDCl₃) δ: 7.74 (d, J = 8.0 Hz, 2H), 7.28 (d, J = 7.9 Hz, 2H), 5.94 (d, J = 149.4 Hz, 2H), 2.71 (q, J = 7.6 Hz, 2H), 1.26 (t, J = 7.6 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ: 169.70, 148.77, 130.70, 129.81, 128.12, 127.51, 126.12, 28.81, 15.29.

HRMS (ESI) *m*/*z* calcd C₉H₁₂NO [M+H]⁺ 150.0913, found 150.0913.

4-Ethoxybenzamide (7e): 84% yield. White solid.

¹H NMR (400 MHz, CDCl₃) δ: 7.80 (d, J = 8.8 Hz, 2H), 6.94 (d, J = 8.8 Hz, 2H), 6.28 (s, 2H),
4.10 (q, J = 7.0 Hz, 2H), 1.45 (t, J = 7.0 Hz, 3H).

¹³C NMR (101 MHz, DMSO-*d*₆) δ: 167.92, 161.33, 129.82, 126.80, 114.21, 63.70, 15.01. HRMS (ESI) *m*/*z* calcd C₉H₁₂NO₂ [M+H]⁺ 166.0863, found 166.0862.

4-Cyanobenzamide (7f): 50% yield. White solid.

¹H NMR (400 MHz, DMSO-*d*₆) δ : 8.24 (s, 1H), 8.00 (dd, *J* = 31.4, 8.3 Hz, 4H), 7.70 (s, 1H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ : 166.91, 138.75, 132.84, 128.72, 118.84, 114.11. HRMS (ESI) *m*/*z* calcd C₈H₇N₂O [M+H]⁺ 147.0553, found 147.0553.

4-Nitrobenzamide (7g): 38% yield. White solid.

¹H NMR (400 MHz, DMSO-d₆) δ: 8.31 (d, J = 8.4 Hz, 3H), 8.12 (d, J = 8.5 Hz, 2H), 7.75 (s, 1H).

¹³C NMR (101 MHz, DMSO-*d*₆) δ: 166.68, 149.51, 140.44, 129.37, 123.90.

HRMS (ESI) *m*/*z* calcd C₇H₇N₂O₃ [M+H]⁺ 167.0451, found 167.0451.

S33

4-(Trifluoromethyl)benzamide (7h): 53% yield. White solid. **¹H NMR (400 MHz, CDCI₃)** δ: 7.93 (s, 2H), 7.73 (d, *J* = 8.2 Hz, 2H), 5.99 (d, *J* = 122.0 Hz, 2H).

¹³C NMR (101 MHz, DMSO-*d*₆) δ: 167.15, 138.54, 132.10, 131.78, 131.46, 131.15, 128.78, 125.73, 125.69.

¹⁹**F NMR (376 MHz, DMSO-***d***₆)** *δ*: -61.38.

HRMS (ESI) *m*/*z* calcd C₈H₇NOF₃ [M+H]⁺ 190.0474, found 190.0473.

[1,1'-Biphenyl]-4-carboxamide (7i): 89% yield. White solid.

¹**H NMR (400 MHz, CDCl₃)** δ : 7.92 (d, J = 8.3 Hz, 2H), 7.69 (d, J = 8.3 Hz, 2H), 7.62 (d, J = 7.5 Hz, 2H), 7.48 (t, J = 7.5 Hz, 2H), 7.40 (t, J = 7.3 Hz, 1H), 6.19 (d, J = 143.5 Hz, 2H).

¹³C NMR (101 MHz, DMSO-*d*₆) δ: 168.06, 143.23, 139.70, 133.57, 129.48, 128.65, 128.48, 127.34, 126.92.

HRMS (ESI) *m*/z calcd C₁₃H₁₂NO [M+H]⁺ 198.0913, found 198.0912.

4-Fluorobenzamide (7j): 77% yield. White solid.

¹**H NMR (400 MHz, CDCl₃)** δ: 7.85 (dd, *J* = 8.6, 5.3 Hz, 2H), 7.14 (t, *J* = 8.5 Hz, 2H), 6.09 (s, 2H).

¹³C NMR (101 MHz, DMSO-*d*₆) δ: 167.31, 165.62, 163.16, 131.21, 131.18, 130.62, 130.53, 115.65, 115.43.

¹⁹F NMR (376 MHz, DMSO-*d*₆) δ: -109.56.

HRMS (ESI) *m*/*z* calcd C₈H₇NOF₃ [M+H]⁺ 190.0474, found 190.0473.

4-Chlorobenzamide (7k): 64% yield. White solid.
¹H NMR (400 MHz, CDCl₃) δ: 7.77 (d, J = 8.5 Hz, 2H), 7.44 (d, J = 8.5 Hz, 2H), 6.03 (s, 2H).
¹³C NMR (101 MHz, DMSO-d₆) δ: 167.30, 136.56, 133.48, 129.87, 128.75.
HRMS (ESI) *m*/*z* calcd C₇H₇NOCl [M+H]⁺ 156.0211, found 156.0209.

4-Bromobenzamide (7I): 65% yield. White solid.

¹**H NMR (400 MHz, CDCl₃)** δ : 7.70 (d, J = 8.5 Hz, 2H), 7.60 (d, J = 8.5 Hz, 2H), 5.98 (d, J = 142.0 Hz, 2H).

¹³C NMR (101 MHz, DMSO-*d*₆) δ: 167.39, 133.86, 131.70, 130.07, 125.49.
 HRMS (ESI) *m/z* calcd C₇H₇NOBr [M+H]⁺ 199.9706, found 199.9704.

1-Naphthamide (7m): 70% yield. White solid.

¹**H NMR (400 MHz, DMSO-***d*₆) δ : 8.34 (d, *J* = 7.6 Hz, 1H), 8.09-7.94 (m, 3H), 7.70-7.61 (m, 2H), 7.56 (ddd, *J* = 20.2, 10.9, 6.4 Hz, 3H).

¹³C NMR (101 MHz, DMSO-d₆) δ: 171.12, 135.13, 133.68, 130.26, 130.21, 128.65, 127.08, 126.60, 126.08, 125.63, 125.41.

HRMS (ESI) *m*/z calcd C₁₁H₁₀NO [M+H]⁺ 172.0757, found 172.0756.

Furan-2-carboxamide (7n): 51% yield. Yellow solid.

¹**H NMR (400 MHz, CDCl₃)** δ : 7.48 (d, J = 0.8 Hz, 1H), 7.18 (d, J = 3.5 Hz, 1H), 6.53 (dd, J = 3.4, 1.7 Hz, 1H), 6.05 (d, J = 207.7 Hz, 2H).

¹³C NMR (101 MHz, DMSO-d₆) δ: 159.89, 148.50, 145.46, 114.08, 112.24.

HRMS (ESI) *m*/*z* calcd C₅H₆NO₂ [M+H]⁺ 112.0393, found 112.0393.

Thiophene-2-carboxamide (70): 82% yield. White solid.

¹**H NMR (400 MHz, CDCl₃)** δ: 7.58 (d, *J* = 3.7 Hz, 1H), 7.55 (d, *J* = 4.9 Hz, 1H), 7.11 (dd, *J* = 4.8, 3.9 Hz, 1H), 5.95 (s, 2H).

¹³C NMR (101 MHz, DMSO-*d*₆) δ: 163.35, 140.78, 131.44, 129.13, 128.35.

HRMS (ESI) *m*/*z* calcd C₅H₆NOS [M+H]⁺ 128.0165, found 128.0164.

3-Phenylpropanamide (7p): 70% yield. White solid.
¹H NMR (400 MHz, CDCl₃) δ: 7.30 (t, J = 7.4 Hz, 2H), 7.22 (d, J = 6.9 Hz, 3H), 5.58 (d, J = 54.8 Hz, 2H), 2.98 (t, J = 7.7 Hz, 2H), 2.55 (t, J = 7.8 Hz, 2H).
¹³C NMR (101 MHz, CDCl₃) δ: 174.00, 139.65, 127.54, 127.28, 125.27, 36.48, 30.36.
HRMS (ESI) *m*/*z* calcd C₉H₁₂NO [M+H]⁺ 150.0913, found 150.0913.

References:

- [1] S. Yamada, D. Morizono and K. Yamamoto, *Tetrahedron Lett.* 1992, **33**, 4629.
- [2] L. Cheng, L. Liu, D. Wang, Y. Chen, Org. Lett. 2009, 11, 3874-3877.
- [3] Y. Cheng, W. Dong, L. Wang, K. Parthasarathy, C. Bolm, Org. Lett. 2014, 16, 2000-2002

S39

645.0

600

ĩ

894.7

900

-795.5

800

844.7

-718.3 780.5

700

.1 4

m/z

500

400

367.

332

L. Huts I had

300

251.9

170.9

h

200

4 .

100

egration Resu	Its for DAD1 B, Sig	=214,4 Ref=off			0.432	21.400		
etTim	Width	Area	Height	Area*	MS (+)	MS (-)		
0.27	0.07	54.59	12.16	0.32	102	ND		
0.36	0.06	63.84	15.26	0.37	102	ND		
0.54	0.18	177.57	13.08	1.03	102	ND	1	
0.96	0.40	385.21	11.94	2.24	102	ND		
1.48	0.53	600.55	14.32	3.49	100	ND		
2.61	0.16	33.69	2.76	0.20	100	ND		
2.91	0.10	29.88	4.04	0.17	100	ND		
3.03	0.11	39.35	5.06	0.23	100	ND		
3.19	0.08	10.37	1.66	0.06	100	ND		
3.30	0.10	265 00	2.44	2 12	100	ND		
3.33	0.07	52 09	00.03	0.31	100	ND		
3.10	0.08	72 97	12 75	0.42	100	ND		
1 08	0.09	7546 27	1660 73	43 83	213	ND		
4 30	0.10	45.03	6 41	0.26	100	ND		
4.53	0.08	2084.71	440.76	12.11	100	ND		
4.73	0.05	20.17	5.90	0.12	100	ND		
4.89	0.08	270.22	51.19	1.57	100	ND		
5.28	0.07	5126.36	1173.99	29.77	378	ND		
5.50	0.11	98.92	13.79	0.57	450	280		
5.62	0.09	54.15	8.45	0.31	378	ND		
5.71	0.13	69.79	6.78	0.41	378	113		
					N N			
					8e			

0.96	0.46	493.20	13.44	2.19	648	ND		E no site
1.48	0.59	649.73	13.94	2.88	100	ND		
3.03	0.16	8.79	0.74	0.04	100	ND		
3.80	0.08	5.04	0.93	0.02	100	ND		
4.09	0.07	5822.75	1357.06	25.81	183	ND		
4.20	0.07	2045.40	488.65	9.07	100	ND	-	
4.44	0.06	10.71	2.55	0.05	100	ND		
4.54	0.09	29.39	5.27	0.13	100	ND		
4.76	0.07	7.79	1.77	0.03	100	ND		
4.88	0.06	1.60	0.44	0.01	100	ND		
5.00	0.07	1201.79	294.12	5.33	100	ND		
5.15	0.07	134.46	29.38	0.60	198	ND		
5.37	0.07	11702.71	2852.22	51.88	384	280		
5.56	0.09	124.60	21.79	0.55	384	331		
5.69	0.06	5.22	1.38	0.02	384	113		
5.78	0.09	8.58	1.39	0.04	384	113		
					+			
					6 2			

8h

$\begin{array}{c} 0.36\\ 0.54\\ 0.96\\ 1.47\\ 2.90\\ \hline 3.03\\ 3.38\\ 3.54\\ 3.78\\ 3.88\\ 4.09\\ 4.30\\ 4.49\\ 4.62\\ 4.88\\ 5.22\\ 5.46\\ \end{array}$	0.06 0.18 0.38 0.22 0.07 0.10 0.08 0.10 0.09 0.08 0.11 0.08 0.11 0.08 0.10 0.08 0.11 0.08 0.10 0.08 0.11	63.21 169.08 270.02 117.31 3.58 6.85 3.78 37.47 19.13 32.81 4487.42 43.68 766.85 137.94 1919.10 347.79 83.04	15.46 12.38 9.02 6.69 0.89 0.68 7.72 2.85 5.75 985.72 5.34 160.80 19.65 422.13 61.02 10.35	0.58 1.55 2.48 1.08 0.03 0.06 0.03 0.34 0.18 0.30 41.17 0.40 7.04 1.27 17.61 3.19 0.76	102 102 102 100 100 100 100 100 100 100	ND ND ND ND ND ND ND ND ND ND ND ND ND N	7	
5.56 5.74	0.06 0.17	2046.55 267.77	512.05 20.81	18.78 2.46	428 500	331 113		
		*			8j			

S66

S115

S189

S199

S210

S211

S217

S218

S219