Electronic Supplementary Information

Towards sustainable synthesis of pyren-1yl azoliums via electrochemical oxidative C–N coupling

Guillaume de Robillard,^{*a*} Oumayma Makni,^{*a*} Hélène Cattey,^{*a*} Jacques Andrieu^{*a*,*} and Charles H. Devillers^{*a*,*}

^a ICMUB UMR6302, CNRS, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France. Fax: +33 380396065; Tel: +33 380399125 E-mail: charles.devillers@u-bourgogne.fr; jacques.andrieu@u-bourgogne.fr

Contents

1.	Reagents and instrumentation	
2.	Electrochemistry	S2
3.	Synthesis and characterization of pyren-1-yl azoliums	S3
	3.1. General procedure for the formation of pyren-1-yl azoliums	S3
	3.2. Synthesis of 1-methyl-3-(pyren-1-yl)-1H-imidazol-3-ium tetrafluorob	orate $(1^+, BF_4^-)S3$
	3.3. Synthesis of 1-methyl-3-(pyren-1-yl)-1 <i>H</i> -benzimidazol-3-ium $(2^+, \mathbf{BF_4}^-)$	tetrafluoroborate S7
	3.4. Synthesis of 1-methyl-4-(pyren-1-yl)-1 <i>H</i> -1,2,4-triazol-4-ium $(3^+, \mathbf{BF_4}^-)$	tetrafluoroborate
	3.5. Synthesis of 3-(pyren-1-yl)-benzothiazol-3-ium tetrafluoroborate (4+,	BF ₄ ⁻)S13
	3.6. Fluorescence properties of azolium compounds	S17
	3.7. Crystal structure determination of 1^+ , BF_4^- and 2^+ , BF_4^-	S18
4.	Atom efficiency and E factor calculations	S19

1. Reagents and instrumentation

Tetraethylammonium tetrafluoroborate (TEABF₄) was synthesized according to the following method. Typically, in a 500 mL Erlenmeyer flask, 84.28 g of tetrafluoroboric acid, HBF₄ (Sigma Aldrich, 48% in H₂O) was mixed with 193.84 g of a solution of tetraethylammonium hydroxide, TEAOH (Alfa Aesar, 35% in H₂O). The reaction mixture was continuously stirred under an air atmosphere. Then, the white precipitate formed after cooling the flask in an ice bucket was isolated by filtration on a Buchner funnel. Finally, the residue was crystallized from MeOH (Carlo Erba, RPE, 99.9%) under reflux, cooled in a freezer at -18 °C, filtered on a Buchner funnel and dried at 110 °C in the stove for at least two days before use. CH₃CN (SDS, Carlo Erba, HPLC gradient 99.9%) was distilled from CaH₂ under Ar, unless otherwise noted. Et₂O (Sigma Aldrich, 99.5%, with BHT stabilizer), HBF₄·Et₂O (Sigma-Aldrich), 1-methylbenzimidazole (Alfa-Aesar, 99 %) and 1-methyl-1,2,4-triazole (Alfa-Aesar, 99 %) were used as received. 1-methylimidazole (Fluka puriss, 99 %) and benzothiazole (Alfa-Aesar, 97 %) were distilled before utilization.

NMR spectra were recorded using a BRUKER 500 MHz Avance II or 300 MHz Bruker Avance III NanoBay spectrometer. ¹H and ¹³C{¹H}NMR spectra were calibrated to TMS on the basis of the relative chemical shift of the solvent as an internal standard.

Mass spectra were obtained using a Bruker Micro-ToF Q instrument in ESI mode.

Elemental analyses were performed on an Analyzer CHNS/O Thermo Electron Flash EA 1112 Series.

UV/Vis absorption spectra were recorded using a Varian Cary UV/Vis spectrophotometer 50 scan using quartz cells (Hellma). In the spectroelectrochemical experiments, a UV/Vis immersion probe (Hellma, l = 2 mm) was connected through a fiber optic to the same spectrophotometer.

Emission spectra were recorded on a JASCO FP8500 spectrofluorometer in a 10 mm pathlength quartz cuvette (Starna) containing 1 mL of a solution of 1.25×10^{-5} M of azolium compound in acetonitrile. Measurement parameters were common for each measured compound: $\lambda_{ex} = 341$ nm, $\lambda_{em} = 360-600$ nm, Ex and Em slits = 5 nm, 1 nm pitch, 1 s response, scan speed = 500 nm·min⁻¹) at 20 °C.

2. Electrochemistry

Unless stated otherwise, all manipulations were performed using Schlenk techniques in an atmosphere of dry oxygen free argon at room temperature ($T = 20 \text{ °C} \pm 3 \text{ °C}$). The supporting electrolyte (tetraethylammonium tetrafluoroborate) was degassed under vacuum before use and then dissolved to a concentration of 0.1 M. Voltammetric analyses were carried out in a standard three-electrode cell, with an Autolab PGSTAT 302 N potentiostat, connected to an interfaced computer that employed Electrochemistry Nova software. The reference electrode was a saturated calomel electrode (SCE) separated from the analyzed solution by a sintered glass disk filled with the background solution. The auxiliary electrode was a platinum wire. For all voltammetric measurements, the working electrode was a platinum electrode disk ($\emptyset = 1 \text{ mm}$). In these conditions, when operating in acetonitrile (0.1 M TEABF₄), the formal potential for the ferrocene (+/0) couple was found to be +0.40 V vs. SCE.

Electrolyses were performed in a cell with one or two compartments separated with glass frits of medium porosity with an Amel 552 potentiostat/galvanostat coupled with an Amel 721 electronic integrator. A platinum wire spiral (l = 50 cm, $\emptyset = 1 \text{ mm}$) was used as the working electrode, a platinum wire spiral (l = 50 cm, $\emptyset = 1 \text{ mm}$) as the counter electrode and a saturated calomel electrode as the reference electrode.

3. Synthesis and characterization of pyren-1-yl azoliums

3.1. General procedure for the formation of pyren-1-yl azoliums

Electrolyses were carried out under an argon atmosphere in 30 mL of acetonitrile containing 0.1 M of TEABF₄, pyrene (0.253 g, 1.25 mmol), nucleophile (3.75 mmol) and HBF₄·Et₂O (0.260 mL, 1.89 mmol) in a two compartment cell under vigorous stirring at room temperature ($T = 20 \text{ °C} \pm 3 \text{ °C}$) and at controlled potential. Electrolyses were stopped after an uptake of 2.35-3.0 F per mol of pyrene. After evaporation of the solvent up to a volume of *ca*. 2 mL, the precipitate obtained by addition of water (100 mL) was washed with 20 mL of Et₂O and dried under vacuum.

3.2. Synthesis of 1-methyl-3-(pyren-1-yl)-1*H*-imidazol-3-ium tetrafluoroborate (1⁺,BF₄⁻) *Entry 2, 3, 5, Table 1*

Electrolysis was performed in a two compartment cell under stirring, argon atmosphere, at room temperature, in 30 mL of acetonitrile containing 0.1 M of TEABF₄, pyrene (0.253 g, 1.25 mmol), 1-methylimidazole (7.53 mmol, 3.76 mmol, 2.51 mmol for entries 2, 3 and 5, respectively) and HBF₄·Et₂O (1.89 mmol for entries 2 and 3, 1.25 mmol for entry 5). The applied potential was + 1.40 V/ECS. The electrolysis was stopped after an uptake of 3.25, 2.35, 2.00 F per mol of pyrene, respectively, the solution was concentrated up to a volume of *ca*. 2 mL and 100 mL of water was added. The resulting precipitate was filtered, washed with Et₂O (20 mL) and dissolved in acetonitrile. After removing the solvent, the solid was dried under vacuum (0.425 g, 1.15 mmol, 91.8%, 0.425 g, 1.15 mmol, 91.8%, 0.345 g, 0.93 mmol, 74.5%, respectively).

Entry 4, Table 1

Electrolysis was performed in a two compartment cell under stirring, at room temperature, under an initial air atmosphere, in 30 mL of acetonitrile (HPLC grade) containing 0.1 M of TEABF₄, pyrene (0.253 g, 1.25 mmol), 1-methylimidazole (0.3 mL, 3.76 mmol) and HBF₄·Et₂O (0.26 mL, 1.89 mmol). The applied potential was + 1.40 V/ECS. The electrolysis was stopped after an uptake of 3.25 F per mol of pyrene, the solution was concentrated up to a volume of *ca*. 2 mL and 100 mL of water was added. The resulting precipitate was filtered, washed with Et₂O (20 mL) and dissolved in acetonitrile. After removing the solvent, the solid was dried under vacuum (0.388 g, 1.05 mmol, 83.9%).

Entry 6, Table 1

Electrolysis was performed in a two compartment cell under stirring, under Ar, at room temperature, in 165 mL of acetonitrile containing 0.1 M of TEABF₄, pyrene (3.500 g, 17.3 mmol), 1-methylimidazole (4.15 mL, 52.1 mmol) and HBF₄(Et₂O) (3.6 mL, 26.2 mmol). The applied potential was + 1.40 V/ECS. The electrolysis was stopped after an uptake of 2.05 F per mol of pyrene, the solution was concentrated up to a volume of *ca*. 10 mL and 200 mL of water was added. The resulting precipitate was filtered, washed with Et₂O (50 mL) and dissolved in acetonitrile. After removing the solvent, the solid was dried under vacuum (6.105 g, 16.49 mmol, 95.3%).

Entry 7, Table 1

Electrolysis was performed in a one compartment cell (galvanostatic conditions, without reference electrode) under stirring, under Ar, at room temperature, in 20 mL of acetonitrile containing 0.1 M of TEABF₄, pyrene (4.045 g, 20.0 mmol), 1-methylimidazole (4.78 mL, 60.0 mmol) and HBF₄·Et₂O (4.12 mL, 30.0 mmol). The applied current was 50 mA. The

electrolysis was stopped after an uptake of 2.05 F per mol of pyrene, the solution was concentrated up to a volume of *ca*. 10 mL and 200 mL of water was added. The resulting precipitate was filtered, washed with Et_2O (50 mL) and dissolved in acetonitrile. After removing the solvent, the solid was dried under vacuum (6.384 g, 17.25 mmol, 86.2%).

Entry 8, Table 1

Electrolysis was performed in a one compartment cell (galvanostatic conditions, without reference electrode) under stirring, under Ar, at room temperature, in 20 mL of acetonitrile containing pyrene (4.045 g, 20.0 mmol), 1-methylimidazole (4.78 mL, 60.0 mmol) and HBF₄·Et₂O (4.12 mL, 30.0 mmol). The applied current was 50 mA. The electrolysis was stopped after an uptake of 2.05 F per mol of pyrene, the solution was concentrated up to a volume of *ca*. 10 mL and 200 mL of water was added. The resulting precipitate was filtered, washed with Et₂O (50 mL) and dissolved in acetonitrile. After removing the solvent, the solid was dried under vacuum (5.930 g, 16.02 mmol, 80.1%).

1-methyl-3-(pyren-1-yl)-1*H*-imidazol-3-ium tetrafluoroborate (1⁺,**B**F₄⁻). Elemental analysis: Found: C, 64.88; H, 4.11; N, 7.61. Calc. for $C_{15}H_{20}BF_4N_2$: C, 64.90; H, 4.08; N, 7.57; λ_{max} (CH₃CN)/nm (log ε) 233 (4.62), 242 (4.76), 265 (4.36), 275 (4.58), 314 (4.01), 326 (4.36), 341 (4.51); ¹H NMR (DMSO-d6, 300 MHz, 298 K) δ (ppm) 9.74 (1H, s, H2), 8.54 (1H, d, J = 8.2 Hz, Hpyrene), 8.50 (1H, br d, J = 2.9 Hz, Hpyrene), 8.47 (1H, br d, J = 3.0 Hz, Hpyrene), 8.42 (1H, d, J = 9.3 Hz, Hpyrene), 8.38 (2H, dd, J = 9.0 Hz, 7.6 Hz, Hpyrene), 8.30 (1H, t, J = 1.8 Hz, H4), 8.30 (1H, d, J = 8.1 Hz, Hpyrene), 8.23 (1H, t, J = 7.6 Hz, Hpyrene), 8.12 (1H, t, J = 1.7 Hz, H5), 7.92 (1H, d, J = 9.2 Hz, Hpyrene), 4.08 (3H, s, CH3); 13C NMR (DMSO-d6, 75 MHz, 298 K) δ (ppm) 138.7 (C2), 132.2, 130.6, 130.1, 130.1, 129.3, 128.0, 127.3, 127.0, 126.9, 126.5, 125.7, 125.1, 124.9 (C4), 124.4, 124.2 (C5), 123.9, 123.1, 120.2, 36.3 (CH3); HRMS (ESI-MS) m/z calcd. For $C_{20}H_{16}N_2$ [M]+: 283.12298, found: 283.12195.

Figure S1. ¹H NMR spectrum of **1**⁺,**BF**₄⁻ in DMSO-d₆, 300 MHz, 298 K.

Figure S2. ¹³C NMR spectrum of **1**⁺,**BF**₄⁻ in DMSO-d₆, 75 MHz, 298 K.

Figure S3. HRMS (ESI-MS) of 1+,BF4-

3.3. Synthesis of 1-methyl-3-(pyren-1-yl)-1*H*-benzimidazol-3-ium tetrafluoroborate (2⁺,BF₄⁻)

Entry 9, Table 1

Electrolysis was performed in a two compartment cell under stirring, under Ar, at room temperature, in 30 mL of acetonitrile containing 0.1 M of TEABF₄, pyrene (0.253 g, 1.25 mmol), methylimidazole (0.498 g, 3.77 mol) and HBF₄·Et₂O (0.26 mL, 1.89 mmol). The applied potential was + 1.40 V/ECS. The electrolysis was stopped after an uptake of 2.66 F per mol of pyrene, the solution was concentrated up to a volume of *ca*. 2 mL and 100 mL of water was added. The resulting white precipitate was filtered, washed with Et₂O (20 mL) and dissolved in acetonitrile. After removing the solvent, the solid was dried under vacuum (0.430 g, 1.02 mmol, 81.7%).

1-methyl-3-(pyren-1-yl)-1*H***-benzimidazol-3-ium tetrafluoroborate (2⁺,BF₄⁻).** Elemental analysis: Found: C, 68.70; H, 4.27; N, 6.63. Calc. for $C_{24}H_{17}BF_4N_2$: C, 68.60; H, 4.08; N, 6.67; λ_{max} (CH₃CN)/nm (log ε) 234 (4.57), 242 (4.70), 265 (4.44), 276 (4.61), 315 (4.04), 327

(4.36), 342 (4.49); ¹H NMR (Acetone-d₆, 300 MHz, 298K) δ (ppm) 10.08 (1H, s, H2), 8.59 (1H, d, J = 8.2 Hz, H_{pyrene}), 8.51 (1H, m, H_{pyrene}), 8.48-8.36 (4H, m, H_{pyrene}), 8.31 (2H, m, H4+H_{pyrene}), 8.23 (1H, t, J = 7.7 Hz, H_{pyrene}), 7.89 (1H, m, H5), 7.83 (1H, d, J = 9.3 Hz, H_{pyrene}), 7.73 (1H, m, H6), 7.54 (1H, m, H7), 4.53 (3H, d, J = 0.5 Hz, CH₃); ¹³C NMR (Acetone-d₆, 75 MHz, 298K) δ (ppm) 145.0 (C2), 134.6, 134.3, 133.4, 132.1, 131.6, 131.3, 130.7, 128.7, 128.4, 128.3, 128.2, 128.1, 127.7, 126.7, 126.5, 126.3, 125.9, 124.7, 121.3, 114.9, 114.7 (C7), 34.7 (CH₃); HRMS (ESI-MS) m/z calcd. For C₂₄H₁₇N₂ [M]⁺: 333.13863, found: 333.13727.

Figure S4. ¹H NMR spectrum of 2⁺,BF₄⁻ in Acetone-d₆, 300 MHz, 298 K.

Figure S5. ¹³C NMR spectrum of **2**⁺,**BF**₄⁻ in Acetone-d₆, 75 MHz, 298 K.

3.4. Synthesis of 1-methyl-4-(pyren-1-yl)-1*H*-1,2,4-triazol-4-ium tetrafluoroborate (3⁺,BF₄⁻)

Entry 10, Table 1

Electrolysis was performed in a two compartment cell under stirring, under Ar, at room temperature, in 30 mL of acetonitrile containing 0.1 M of TEABF₄, pyrene (0.253 g, 1.25 mmol), 1-methyl-1,2,4-triazole (0.285 mL, 3.77 mmol) and HBF₄·Et₂O (0.260 mL, 1.89 mmol). The applied potential was + 1.40 V/ECS. The electrolysis was stopped after an uptake of 2.55 F per mol of pyrene, the solution was concentrated up to a volume of *ca*. 2 mL and 100 mL of water was added. The slightly yellow precipitate was filtered, washed with Et₂O (20 mL) and dissolved in acetonitrile. After removing the solvent, the solid was dried under vacuum (0.407 g, 1.10 mmol, 87.8%).

1-methyl-4-(pyren-1-yl)-1H-1,2,4-triazol-4-ium tetrafluoroborate (3+,BF₄-). Elemental

analysis: Found: C, 61.71; H, 3.80; N, 11.18. Calc. for $C_{19}H_{14}BF_4N_3$: C, 61.49; H, 3.80; N, 11.32; λ_{max} (CH₃CN)/nm (log ε) 233 (4.58), 242 (4.73), 265 (4.34), 275 (4.55), 314 (4.00), 327 (4.34), 342 (4.49); ¹H NMR (DMSO-d₆, 300 MHz, 298K) δ (ppm) 10.75 (1H, s, H5), 9.79 (1H, s, H3), 8.58 (1H, d, J = 8.2 Hz, H_{pyrene}), 8.55-8.42 (4H, m, H_{pyrene}), 8.40-8.34 (2H, m, H_{pyrene}), 8.25 (1H, t, J = 7.7 Hz, H_{pyrene}), 8.07 (1H, d, J = 9.3 Hz, H_{pyrene}), 4.29 (3H, s, CH₃); ¹³C NMR (DMSO-d₆, 75 MHz, 298K) δ (ppm) 145.5 (C3), 144.5 (C5), 132.6, 130.6, 130.3, 130.0, 129.6, 127.4, 127.1, 127.0, 126.7, 125.7, 125.1, 124.8, 124.6, 123.8, 122.9, 120.2, 39.1 (CH₃); HRMS (ESI-MS) m/z calcd. For $C_{19}H_{14}N_3$ [M]⁺: 284.11822, found: 284.11741.

Figure S7. ¹H NMR spectrum of **3**⁺,**BF**₄⁻ in DMSO-d₆, 300 MHz, 298 K.

Figure S8. ¹³C NMR spectrum of **3**⁺,**BF**₄⁻ in DMSO-d₆, 75 MHz, 298 K.

3.5. Synthesis of 3-(pyren-1-yl)-benzothiazol-3-ium tetrafluoroborate (4⁺,BF₄⁻)

Entry 11, Table 1

Electrolysis was performed in a two compartment cell under sonication, under Ar, shielded from light, at room temperature, in 30 mL of acetonitrile containing 0.1 M of TEABF₄, pyrene (0.253 g, 1.25 mmol), benzothiazole (0.41 mL, 3.75 mmol) and HBF₄·OEt₂ (0.26 mL, 1.89 mmol). The applied potential was + 1.40 V/ECS. The electrolysis was stopped after an uptake of 3 F per mol of pyrene, the solution was concentrated up to a volume of *ca*. 2 mL and 100 mL of water was added. The resulting precipitate was filtered, washed with Et₂O (50 mL) and dissolved in acetonitrile. After removing the solvent, the solid was dried under vacuum (0.305 g, 0.72 mmol, 57.3%).

3-(pyren-1-yl)-benzothiazol-3-ium tetrafluoroborate (4⁺,BF₄⁻).

Elemental analysis: Calc. for C₂₃H₁₄BF₄NS: C, 65.27; H, 3.33; N, 3.31; S, 7.58; Found: C, 65.07; H, 3.37; N, 3.35; S, 7.81; λ_{max} (CH₃CN)/nm (log ε) 234 (4.65), 242 (4.79), 266 (4.39), 276 (4.51), 314 (4.12), 328 (4.32), 342 (4.38); ¹H NMR (Acetone-d₆, 300 MHz, 298K) δ (ppm) 11.15 (1H, s, H2), 8.81 (1H, m, H4), 8.67 (1H, d, *J* = 8.2 Hz, H_{pyrene}), 8.61 (1H, d, *J* = 8.2 Hz, H_{pyrene}), 8.57 (1H, m, H_{pyrene}), 8.53-8.42 (3H, m, H_{pyrene}), 8.33 (1H, d, *J* = 8.9 Hz, H_{pyrene}), 8.27 (1H, t, *J* = 7.6 Hz, H_{pyrene}), 8.04 (1H, m, H5), 7.92 (1H, m, H6), 7.73 (1H, m, H7), 7.71 (1H, d, *J* = 9.2 Hz, H_{pyrene}); ¹³C NMR (Acetone-d₆, 125 MHz, 298K) δ (ppm) 167.5 (C7a), 143.9 (C2), 134.9, 132.6, 132.1, 131.9, 131.8 (C6), 131.6, 131.1, 130.4 (C5), 129.4, 128.6, 128.5, 128.1, 127.8, 126.6, 126.3 (C4), 125.9, 125.8, 124.6, 120.8, 118.8; HRMS (ESI-MS) m/z calcd. For C₂₃H₁₄NS [M]⁺: 336.08282, found: 336.08415.

Figure S10. ¹H NMR spectrum of 4⁺, BF₄⁻ in Acetone-d₆, 500 MHz, 298 K.

Figure S11. ¹³C NMR spectrum of 4⁺,BF₄⁻ in Acetone-d₆, 125 MHz, 298 K.

Figure S12. HRMS (ESI-MS) of 4⁺,BF₄⁻

3.6. Fluorescence properties of azolium compounds

Figure S13. Normalized emission spectra of 1⁺, BF_4^- , 2⁺, BF_4^- , 3⁺, BF_4^- and 4⁺, BF_4^- (normalized at $\lambda = 378$ nm, identical measurement parameters for each compound, CH₃CN, $C = 1.25 \times 10^{-5}$ M, $\lambda_{\text{excitation}} = 341$ nm).

Table S1. Wavelengths of maxima and associated relative emission intensities for 1^+ , BF_4^- , 2^+ , BF_4^- , 3^+ , BF_4^- and 4^+ , BF_4^- (CH₃CN, $C = 1.25 \times 10^{-5}$ M, $\lambda_{\text{excitation}} = 341$ nm, identical measurement parameters were used for each compound). The highest emission intensity (for 1^+ , BF_4^- at 378 nm) was arbitrarily fixed to 1.000 for an easier comparison between pyrene-based compounds.

Compound	λ_{\max} (nm) /	λ_{\max} (nm) /	λ_{\max} (nm) /	λ_{\max} (nm) /	
	relative emission	relative emission	relative emission	relative emission	
	intensity	intensity	intensity	intensity	
1+, B F ₄ -	378 / 1.000	397 / 0.766	416 / 0.262		
2+,BF ₄ -	378 / 0.012	397 / 0.009	440 / 0.019		
3+,BF ₄ -	378 / 0.396	397 / 0.304	420 / 0.165	447 / 0.153	
4+,BF ₄ -	378 / 0.007	396 / 0.006	418 / 0.004		

Figure S14. Picture taken with $\lambda_{\text{excitation}} = 365 \text{ nm for } 1^+$, BF_4^- , 2^+ , BF_4^- , 3^+ , BF_4^- and 4^+ , BF_4^- in the solid state.

3.7. Crystal structure determination of 1⁺, BF₄⁻ and 2⁺, BF₄⁻.

Crystal Data for C₂₀H₁₅BF₄N₂ (M=370.15 g/mol): orthorhombic, space group Pbca (no. 61), a = 11.5582(7) Å, b = 12.3717(7) Å, c = 23.8099(18) Å, V = 3404.7(4) Å³, Z = 8, T = 115.0 K, μ (MoK α) = 0.115 mm⁻¹, *Dcalc* = 1.444 g/cm³, 22986 reflections measured (5.914° $\leq 2\Theta \leq 54.95^{\circ}$), 3884 unique ($R_{int} = 0.0301$, $R_{sigma} = 0.0249$) which were used in all calculations. The final R_1 was 0.0499 (I > 2 σ (I)) and wR_2 was 0.1362 (all data).

Crystal Data for C₂₆H₂₀BF₄N₃ (*M*=461.26 g/mol): triclinic, space group P-1 (no. 2), *a* = 8.5758(6) Å, *b* = 10.4878(7) Å, *c* = 12.8368(8) Å, *a* = 75.320(2)°, *β* = 78.092(2)°, *γ* = 74.019(2)°, *V* = 1062.06(12) Å³, *Z* = 2, *T* = 100.0 K, μ (MoK*a*) = 0.110 mm⁻¹, *Dcalc* = 1.442 g/cm³, 52383 reflections measured (5.576° ≤ 2Θ ≤ 55.19°), 4913 unique (*R*_{int} = 0.0332, R_{sigma} = 0.0167) which were used in all calculations. The final *R*₁ was 0.0379 (I > 2σ(I)) and *wR*₂ was 0.1019 (all data).

Table S2. Crystal and structure refinement data for 1⁺,BF₄⁻ and 2⁺,BF₄⁻.

Identification Code	1 ⁺ ,BF ₄ ⁻	2 ⁺ ,BF ₄ ⁻
Empirical formula	$C_{20}H_{15}BF_4N_2$	$C_{26}H_{20}BF_4N_3$
Formula weight	370.15	461.26
Temperature/K	115	100
Crystal system	orthorhombic	triclinic
Space group	Pbca	P-1
a/Å	11.5582(7)	8.5758(6)
b/Å	12.3717(7)	10.4878(7)
c/Å	23.8099(18)	12.8368(8)
α/°	90	75.320(2)
β/°	90	78.092(2)
$\gamma/^{\circ}$	90	74.019(2)
Volume/Å ³	3404.7(4)	1062.06(12)
Ζ	8	2
$\rho_{calc}g/cm^3$	1.444	1.442
μ/mm ⁻¹	0.115	0.110
F(000)	1520.0	476.0
Crystal size/mm ³	$0.30\times0.25\times0.10$	$0.25 \times 0.17 \times 0.13$
Radiation	MoK α ($\lambda = 0.71073$)	MoKa ($\lambda = 0.71073$)
20 range for data collection/°	5.914 to 54.95	5.576 to 55.19
Index ranges	$-15 \le h \le 9, -16 \le k \le 10, -29 \le l \le 30$	$\textbf{-}11 \leq h \leq 11, \textbf{-}13 \leq k \leq 13, \textbf{-}16 \leq l \leq 16$
Reflections collected	22986	52383
Independent reflections	$3884 [R_{int} = 0.0301, R_{sigma} = 0.0249]$	4913 [$R_{int} = 0.0332$, $R_{sigma} = 0.0167$]
Data/restraints/parameters	3884/0/273	4913/0/309
Goodness-of-fit on F ²	1.026	1.033
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0499$, $wR_2 = 0.1221$	$R_1 = 0.0379, wR_2 = 0.0933$
Final R indexes [all data]	$R_1 = 0.0714$, $wR_2 = 0.1362$	$R_1 = 0.0506$, $wR_2 = 0.1019$
Largest diff. peak/hole / e Å ⁻³	0.39/-0.32	0.39/-0.32
N° CCDC	1058690	1058691

4. Atom efficiency and E factor calculations

Atom efficiency (%) =
$$\frac{M final \ product}{\sum x M reactant} \times 100$$

 $E factor(molar) = EM = \frac{\sum xMwaste}{Mfinal \ product}$

E factor(mass) - Em -	\sum mreactant – mfinal product
L j u c c o (m u s s) = L m =	mfinal product

	Reactant (xM/m)		M _{Waste} (g.mol ⁻¹)				Atom	[
entry	pyrene 1	nucleonhile	nucleophile Anion source	byproduct	excess		M _{final product} m _{final product}	efficiency	E _M	Em
		nucleophile			nucleophile	other		(%)		
1	202.26 g.mol ⁻¹ 0.506 g	10×82.1 g.mol ⁻¹ 2.053 g	2×122.44 g.mol ⁻¹ 0.612 g	1.01 (H ⁺) 83.45 (ClO ₃ ⁻)	9×82.1 (MeIm)	2×22.99 (Na ⁺)	382.8 g.mol ⁻¹ 0.861 g	30	2.27	2.68
2	202.26 g.mol ⁻¹ 0.253 g	6×82.1 g.mol ⁻¹ 0.618 g	1.5×87.81 g.mol ⁻¹ 0.164 g	2.02 (H ₂)	5×82.1 (MeIm)	0.5×87.81 (HBF ₄)	370.2 g.mol ⁻¹ 0.425 g	45	1.23	1.44
3	202.26 g.mol ⁻¹ 0.253 g	3×82.1 g.mol ⁻¹ 0.309 g	1.5×87.81 g.mol ⁻¹ 0.164 g	2.02 (H ₂)	2×82.1 (MeIm)	0.5×87.81 (HBF ₄)	370.2 g.mol ⁻¹ 0.425 g	64	0.57	0.71
4	202.26 g.mol ⁻¹ 0.253 g	3×82.1 g.mol ⁻¹ 0.309 g	1.5×87.81 g.mol ⁻¹ 0.164 g	2.02 (H ₂)	2×82.1 (MeIm)	0.5×87.81 (HBF ₄)	370.2 g.mol ⁻¹ 0.388 g	64	0.57	0.87
5	202.26 g.mol ⁻¹ 0.253 g	2×82.1 g.mol ⁻¹ 0.206 g	1×87.81 g.mol ⁻¹ 0.110 g	2.02 (H ₂)	82.1 (MeIm)		370.2 g.mol ⁻¹ 0.345 g	81	0.23	0.65
6	202.26 g.mol ⁻¹ 3.500 g	3×82.1 g.mol ⁻¹ 4.275 g	1.5×87.81 g.mol ⁻¹ 2.279 g	2.02 (H ₂)	2×82.1 (MeIm)	0.5×87.81 (HBF ₄)	370.2 g.mol ⁻¹ 6.105 g	64	0.57	0.65
7	202.26 g.mol ⁻¹ 4.045 g	3×82.1 g.mol ⁻¹ 4.923 g	1.5×87.81 g.mol ⁻¹ 2.634 g	2.02 (H ₂)	2×82.1 (MeIm)	0.5×87.81 (HBF ₄)	370.2 g.mol ⁻¹ 6.384 g	64	0.57	0.82
8	202.26 g.mol ⁻¹ 4.045 g	3×82.1 g.mol ⁻¹ 4.923 g	1.5×87.81 g.mol ⁻¹ 2.634 g	2.02 (H ₂)	2×82.1 (MeIm)	0.5×87.81 (HBF ₄)	370.2 g.mol ⁻¹ 5.93 g	64	0.57	0.96
9	202.26 g.mol ⁻¹ 0.253 g	3×132.2 g.mol ⁻¹ 0.498 g	1.5×87.81 g.mol ⁻¹ 0.164 g	2.02 (H ₂)	2×132.2 (MeBzIm)	0.5×87.81 (HBF ₄)	420.2 g.mol ⁻¹ 0.430 g	58	0.74	1.13
10	202.26 g.mol ⁻¹ 0.253 g	3×83.1 g.mol ⁻¹ 0.418 g	1.5×87.81 g.mol ⁻¹ 0.164 g	2.02 (H ₂)	2×83.1 (MeTrz)	0.5×87.81 (HBF ₄)	371.1 g.mol ⁻¹ 0.407 g	64	0.57	1.05
11	202.26 g.mol ⁻¹ 0.253 g	3×135.2 g.mol ⁻¹ 0.511 g	1.5×87.81 g.mol ⁻¹ 0.164 g	2.02 (H ₂)	2×135.2 (BzThz)	0.5×87.81 (HBF ₄)	423.2 g.mol ⁻¹ 0.305 g	57	0.75	2.04

Solvent and supporting electrolyte have been excluded from these calculations excepted if they are used as reactant.

Entry 1

Entry 2-11

