Effective deoxygenation of fatty acids over Ni(OAc)₂ in the absence of H₂ and solvent

Wenjing Li,^{a, b} Yongjun Gao,^a Siyu Yao,^b Ding Ma*^b and Ning Yan*^a

^aDepartment of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.

^bBeijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.

Corresponding Author

* Fax: +65 6779 1936; Phone: +65 6516 2886; E-mail: ning.yan@nus.edu.sg.

* Fax: +86-10-62758603; Phone: +86-10-62758603; E-mail: dma@pku.edu.cn.

Contents

Fig. S1 Thermogravimetric analysis under N ₂ flow. (a) different acetate salts; (b) different nickel salts
Fig. S2 XRD patterns of different nickel salts with stearic acid. (a) before reaction; (b) after reaction
Fig. S3 XAS spectra of different nickel slats. (a) Ni(OAc) ₂ , Ni(acac) ₂ and Ni(NO ₃) ₂ catalytic systems; (b) NiCl ₂ catalytic system; (c) NiSO ₄ catalytic system
Fig. S4 TEM images and element mapping of different nickel salts after reaction with stearic acid. (a)Ni(OAc) ₂ ; (b) NiCl ₂ ; (c)NiSO ₄
Fig. S5 The variation of product yields with time under different temperatures. (a) Product yield with time at 330 $^{\circ}$ C; (b) Product yield with time at 370 $^{\circ}$ C
Fig. S6 FT-IR spectra of gas products8
Table S1. Catalytic activity of stearic acid deoxygenation without catalyst under different temperatures ^a
Table S2. Catalytic activity of different nickel based catalysts on the deoxygenation of stearic acid a 10
Table S3. Deoxygenation rate constants under different reaction temperatures

Fig. S1 Thermogravimetric analysis under N_2 flow. (a) different acetate salts; (b) different nickel salts.

Fig. S2 XRD patterns of different nickel salts with stearic acid. (a) before reaction; (b) after reaction.

Fig. S3 XAS spectra of different nickel slats. (a) $Ni(OAc)_2$, $Ni(acac)_2$ and $Ni(NO_3)_2$ catalytic systems; (b) $NiCl_2$ catalytic system; (c) $NiSO_4$ catalytic system.

Fig. S4 TEM images and element mapping of different nickel salts after reaction with stearic acid. (a)Ni(OAc)₂; (b) NiCl₂; (c)NiSO₄.

Fig. S5 The variation of product yields with time under different temperatures. (a) Product yield with time at 330 °C; (b) Product yield with time at 370 °C.

Fig. S6 FT-IR spectra of gas products.

	Catalyst	GC yield / % ^b						HPLC
Entry		Cracking	Heptadecen Heptadecan Stearaldehyd Heavy					Conv.
		product	e	e	e	product	Iotal	/%0 ^c
1	330-blank	0.49	0.44	0.62	0.34	0.42	2.32	6.89
2	370-blank	7.74	0.39	0.67	0.17	1.46	10.4	21.2
3	390-blank	15.6	1.11	2.37	0.08	0.51	19.6	31.0

Table S1. Catalytic activity of stearic acid deoxygenation without catalyst under different temperatures a

^{*a*} Reaction conditions: stearic acid (200 mg); T = 350 °C; t = 2 h. ^{*b*} Determined by GC and calculated according to effective carbon number with dodecane as internal standard. Cracking: C8-C16 alkenes and alkanes; Heavy product: 2-C19-one and stearone; -: not detected. ^{*c*} Determined by HPLC.

	Catalyst	GC yield / % ^b						
Entry		Cracking product	Heptadecene	Heptadecanes	Stearaldehyde	Heavy product	Tota 1	conv./% ^c
1 <i>d</i>	Ni(OAc) ₂ - Au(OAc) ₃	4.40	18.9	25.1	-	2.55	51.0	62.1
2 ^{<i>d</i>}	Ni(OAc) ₂ - Co(OAc) ₂	3.83	18.2	22.9	-	14.7	59.7	77.1
3 <i>d</i>	Ni(OAc) ₂ - Mn(OAc) ₂	3.98	18.2	24.2	-	11.9	58.3	81.2
4 ^{<i>d</i>}	Ni(OAc) ₂ - Zn(OAc) ₂	3.98	17.1	23.4	-	8.58	53.0	-
5 ^d	Ni(OAc) ₂ - Cu(OAc) ₂	5.11	18.1	22.6	-	2.46	48.3	64.9
6 <i>d</i>	Ni(OAc) ₂ - AgOAc	5.07	15.6	20.3	-	1.32	42.3	53.8
7 ^e	Ni(OAc) ₂ - Co(OAc) ₂ (8:2)	4.38	19.9	25.2	-	9.02	58.4	-
8 e	Ni(OAc) ₂ - Cu(OAc) ₂ (8:2)	6.41	19.1	24.4	-	4.35	54.3	-

Table S2. Catalytic activity of different nickel based catalysts on the deoxygenation of stearic acid a

^{*a*} Reaction conditions: stearic acid (200 mg); T = 350 °C; t = 3.5 h. ^{*b*} Determined by GC and calculated according to effective carbon number with dodecane as internal standard. Cracking: C8-C16 alkenes and alkanes; Heavy product: 2-C19-one and stearone; -: not detected. ^{*c*} Determined by HPLC. ^{*d*} Ni(OAc)₂ (1 mol%), other acetate salts (1 mg). ^{*e*} The molar ratio of Ni: Co and Ni: Cu was 8:2. These two materials were prepared by dissolving two acetate salts in water and then free dried for use.

		1
T / °C	Rate constant / \times 10 ⁻⁴ s ⁻¹	Linear fitting R ²
330	0.7267	0.9976
350	1.81	0.9690
370	3.498	0.9770
390	5.478	0.8401

Table S3. Deoxygenation rate constants under different reaction temperatures