Supplementary Information

Preparation of lignin/glycerol-based bis(cyclic carbonate)

 for synthesis of polyurethanes
${ }^{\text {aD Dalian National Laboratory for Clean Energy; Dalian Institute of Chemical Physics, CAS, Dalian }}$ 116023, PR China
${ }^{\text {b }}$ State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, PR China
${ }^{\text {c Department of polymer materials and engineering, College of Materials and Metallurgy, Guizhou }}$ University, Guiyang, 550025, China

Email: hbxie@dicp.ac.cn; zhaozb@dicp.ac.cn

Experimental Details

Materials, chemicals and instruments

Creosol (99\%) was purchased from Acros and used as received. Epichlorohydrin and 1,6hexamethylene diamine (HMDA) were obtained from Sinopharm Chemical Reagent Co., Ltd (Shanghai China). 1,5,7-triazabicyclo[4,4,0]-dec-5-ene (TBD) was obtained from J\&K Scientific Ltd.. Diaminehydrate (DAH) ($99+\%$) was supplied by Alfa. Isophorondiamine (IPDA) was purchased from Aladdin. All other chemicals were supplied by local suppliers and used without further purification.

Melting points were determined by X-4 Melting Point apparatus (Beijing Tech Instrument Co. Ltd.). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker AVANCE III 500 MHz or 400 MHz . Chemical shifts (δ) were reported in parts per million (ppm). Fourier transform infrared spectroscopy (FT-IR) measurements were recorded on Tensor 27 in the range of $400-4000 \mathrm{~cm}^{-1}$. High-resolution mass spectra (HRMS) were performed on a LTQ Orbitrap Elite (Thermo). Wideangle X-ray powder diffraction (WAXD) was performed by X'pert Pro-1 X-ray diffractometer using Ni-filtered Cu KR radiation ($40 \mathrm{kV}, 30 \mathrm{~mA}$) with $5 \% \mathrm{~min}$ scanning rate at room temperature. Diffraction intensity was measured in a range of $2 \theta=5-90^{\circ}$.

Gel permeation chromatography (GPC) analyses were performed on TDA302 equipped with small angle light scattering detector in THF (flow rate $1.0 \mathrm{~mL} / \mathrm{min}$) at $30^{\circ} \mathrm{C}$ calibration using polystyrenes as standards. Thermogravimetric analyses (TGA) were acquired under nitrogen with a TGA-DSC STA 449F-3 instruments. About 5 mg of sample was heated at $10^{\circ} \mathrm{C} / \mathrm{min}$ from 40 to $700^{\circ} \mathrm{C}$. Differential scanning calorimetry (DSC) experiments were performed on a DSC 204 HP instruments. The samples ($5-10 \mathrm{mg}$) were enclosed in aluminum pan and placed in the heating cell with an empty pan as reference. All samples were heated under nitrogen flow ($20 \mathrm{~mL} / \mathrm{min}$) from -
$60^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$ at a heating rate of $10^{\circ} \mathrm{C} / \mathrm{min}$. The glass transition temperature was recorded from the second run heating cycle.

Typical procedure for the synthesis of bisphenol

The lignin-based bisphenol was prepared according to our previous report. Briefly, creosol $(0.276 \mathrm{~g}, 2 \mathrm{mmol}), 37 \%$ formaldehyde ($0.081 \mathrm{~g}, 1 \mathrm{mmol}$) and lignosulfonic acid ($20 \mathrm{mmol} \%$) were added to the deionized water (2 mL). The reaction was heated at $100{ }^{\circ} \mathrm{C}$ under N_{2} for 6 h and precipitates were formed. The solution was decanted and the solid was purified by column chromatography using petroleum ether/ethyl acetate (3:1) as eluents.

5,5'-methylenebis(2-methoxy-4-methylphenol) (1) yield 52.7\%. m.p. 134-136 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ $\operatorname{NMR}\left(500 \mathrm{MHz}\right.$ DMSO- $\left.\mathrm{d}_{6}\right), \delta=8.54(\mathrm{~s}, 2 \mathrm{H}), 6.73(\mathrm{~s}, 2 \mathrm{H}), 6.30(\mathrm{~s}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 6 \mathrm{H}), 3.57(\mathrm{~s}, 2 \mathrm{H})$, $2.09(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz DMSO-d ${ }_{6}$), $\delta=145.5,144.2,130.8,126.0,116.6,114.4,55.7$, 34.6, 18.6. FT-IR (KBr) $v_{\max }\left(\mathrm{cm}^{-1}\right)$ 1078, 1196 (C-O); 1446, 1511, 1595 (aromatic); 2956, 3458, $3528(\mathrm{O}-\mathrm{H})$. HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 311.1259$, found 311.1252.

Typical procedure for the synthesis of bisepoxide

Compound 1 ($1.218 \mathrm{~g}, 4.22 \mathrm{mmol}$), $\mathrm{BnEt}_{3} \mathrm{NCl}$ (0.1 eq.) and epichlorohydrin (42.2 mmol) were added into a round-bottomed flask and stirred at $80^{\circ} \mathrm{C}$ for 1 hour. Then, the solution was cooled down to room temperature and aqueous solution of $\mathrm{BnEt}_{3} \mathrm{NCl}$ (0.1 eq.) and NaOH (16.88 mmol) was added. The mixture was stirred at room temperature for 30 min . Ethyl acetate and water were added, and the aqueous phase was extracted with ethyl acetate. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and excess amount of ethyl acetate and epichlorohydrin were removed by rotary evaporator, then the product was obtained through column chromatography (petroleum ether/ethyl acetate $=2 / 1$). Yield: 83.7%
$\operatorname{Bis}\left(5-\left(\left(\right.\right.\right.$ oxiran-2-yl)methoxy)-4-methoxy-2-methylphenyl)methane (2) M.p. $=98-99{ }^{\circ} \mathrm{C}$, ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz} \mathrm{CDCl}_{3}\right), \delta=6.73(\mathrm{~s}, 2 \mathrm{H}), 6.48(\mathrm{~s}, 2 \mathrm{H}), 4.07-4.04(\mathrm{~m}, 2 \mathrm{H}), 3.91-3.90(\mathrm{~m}, 2 \mathrm{H})$, $3.86(\mathrm{~s}, 6 \mathrm{H}), 3.73(\mathrm{~s}, 2 \mathrm{H}), 3.29-3.27(\mathrm{~m}, 2 \mathrm{H}), 3.82-3.80(\mathrm{t}, 4 \mathrm{~Hz}, 2 \mathrm{H}), 2.64-2.63(\mathrm{~m}, 2 \mathrm{H}), 2.19(\mathrm{~s}$, $6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz} \mathrm{CDCl}_{3}$), $\delta=147.9,146.0,130.7,129.9,116.2,114.4,70.6,56.2,50.3$, 45.1, 35.8, 19.2. FT-IR $(\mathrm{KBr}) v_{\max }\left(\mathrm{cm}^{-1}\right)$ 1008, $1219(\mathrm{C}=\mathrm{O}), 1466,1525,1611$ (aromatic), 2937. HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 423.1784$, found 423.1780 .

1-(5-(5-((oxiran-2-yl)methoxy)-4-methoxy-2-methylbenzyl)-2-methoxy-4-methylphenoxy)-3-chloropropan-2-ol (3) was yellow oil ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz} \mathrm{CDCl}{ }_{3}$), $\delta=6.72$ ($\mathrm{s}, 2 \mathrm{H}$), 6.49 (s, $1 \mathrm{H}), 6.47(\mathrm{~s}, 1 \mathrm{H}), 4.09-4.05(\mathrm{~m}, 2 \mathrm{H}), 3.95-3.94(\mathrm{~d}, \mathrm{~J}=5 \mathrm{~Hz}, 2 \mathrm{H}) 3.88-3.85(\mathrm{~m}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H})$, $3.81(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 2 \mathrm{H}), 3.69-3.66(\mathrm{~m}, 1 \mathrm{H}), 3.62-3.59(\mathrm{~m}, 1 \mathrm{H}), 3.27(\mathrm{~s}, 1 \mathrm{H}), 2.79-2.77(\mathrm{t}, \mathrm{J}=4.5$ $\mathrm{Hz}, 1 \mathrm{H}), 2.61(\mathrm{~m}, 1 \mathrm{H}), 2.18(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz CDCl 3) , $\delta=147.8$, 147.7, 145.8, 145.7, $130.8,130.4,130.2,129.7,117.0,116.1,114.3,114.2,71.4,70.4,69.8,55.9,55.8,50.2,45.5,44.7$, 35.5, 19.0, 18.9. FT-IR $(\mathrm{KBr}) \nu_{\max }\left(\mathrm{cm}^{-1}\right) 750(\mathrm{C}-\mathrm{Cl}), 1202(\mathrm{C}-\mathrm{O}), 1462,1512,1609$ (aromatic), 2934, $3473(\mathrm{O}-\mathrm{H})$. HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{O}_{6} \mathrm{ClNa}[\mathrm{M}+\mathrm{Na}]^{+}: 459.1550$, found 459.1571.

Typical procedure for the synthesis of bis(cyclic carbonate)

Compound $2(0.5 \mathrm{~g}, 1.25 \mathrm{mmol})$ and 12.5 g of a mixture of TBAB and TBAI $(1: 1, \mathrm{w} / \mathrm{w})$ were added to stainless steel autoclave equipped with a magnetic stirrer. Then, CO_{2} was charged in the autoclave and adjusted to 2 MPa . The reaction was carried out at specified temperature for a
desired period of time. After the reaction, the autoclave was cooled and the excess CO_{2} was slowly vented. The product was extracted with ethyl acetate and purified by cholum chromatography (petroleum ether/ethyl acetate $=2 / 1$). Yield: 98.9%

4,4'-(((methylenebis(2-methoxy-4-methyl-5,1-

phenylene))bis(oxy))bis(methylene))bis(1,3-dioxolan-2-one) (4). m.p.: $156{ }^{\circ} \mathrm{C},{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=6.74(\mathrm{~s}, 2 \mathrm{H}), 6.49(\mathrm{~s}, 2 \mathrm{H}), 4.89-4.95(\mathrm{~m}, 2 \mathrm{H}), 4.52-4.59(\mathrm{~m}, 4 \mathrm{H}), 4.08-4.16(\mathrm{~m}$, $4 \mathrm{H}), 3.83(\mathrm{~s}, 6 \mathrm{H}), 3.73(\mathrm{~s}, 2 \mathrm{H}), 2.20(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=154.9,148.7$, $145.7,131.6,130.9,118.5,114.9,74.9,69.9,60.4,56.2,35.4,19.3$. FT-IR (KBr) $v_{\max }\left(\mathrm{cm}^{-1}\right) 1170$ (C-O), 1460, 1509, 1609 (aromatic), 1791 (C=O), 2939 (C-H). HRMS calcd for $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{O}_{10}$ $[\mathrm{M}+\mathrm{H}]^{+}: 489.1761$, found 489.1732.

4-((2-methoxy-5-(4-methoxy-2-methyl-5-(oxiran-2-ylmethoxy)benzyl)-4-

methylphenoxy)methyl)-1,3-dioxolan-2-one (5) ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=6.72(\mathrm{~s}, 2 \mathrm{H})$, $6.48(\mathrm{~s}, 1 \mathrm{H}), 6.46(\mathrm{~s}, 1 \mathrm{H}), 4.92-4.87(\mathrm{~m}, 1 \mathrm{H}), 4.52-4.50(\mathrm{~m}, 2 \mathrm{H}), 4.11-4.02(\mathrm{~m}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H})$, $3.80(\mathrm{~s}, 3 \mathrm{H}), 3.28-3.25(\mathrm{~m}, 1 \mathrm{H}), 2.79-2.78(\mathrm{t}, \mathrm{J}=2.5 \mathrm{~Hz} 1 \mathrm{H}), 2.63-2.61(\mathrm{~m}, 1 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H})$, $2.17(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=154.8,148.3,147.9,145.9,145.5,131.3,130.9$, $130.4,129.8,117.9,116.3,114.7,114.4,74.6,70.6,69.6,66.3,56.0,55.9,50.3,44.7,35.4,19.1$, 19.0. FT-IR (KBr) $v_{\max }\left(\mathrm{cm}^{-1}\right) 1302(\mathrm{C}-\mathrm{O}), 1460,1512,1608$ (aromatic), $1797(\mathrm{C}=\mathrm{O}), 2928(\mathrm{C}-\mathrm{H})$. HRMS calcd for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{O}_{8} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 467.1682$, found 467.1637 .

Polyadditon of bis(cyclic carbonate) with diamine

The bis(cyclic carbonate) ($0.244 \mathrm{~g}, 0.5 \mathrm{mmol}$) was dissolved in DMSO (0.5 mL) and vaccum degassed, followed by diamine (0.5 mmol) and TBD ($5 \mathrm{~mol} \%$) addition. The reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 24 h under N_{2} atmosphere. After the reaction, the resulting mixture was poured into water and the precipitate was washed with water then lyophilized to obtained non-isocyanate polyurethanes (NIPUs).

6a-2: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta=7.13-7.06(-\mathrm{NH}), 6.80(-\mathrm{ArH}), 6.48(-\mathrm{ArH}), 5.09(-$ $\left.\mathrm{CH}_{2} \mathrm{OH}\right), 4.83-4.77\left(-\mathrm{OCH}\left(\mathrm{CH}_{2} \mathrm{OH}\right) \mathrm{CH}_{2}-\right), 4.01-3.87\left(-\mathrm{CH}_{2} \mathrm{OH},-\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{O}-,-\mathrm{CH}_{2} \mathrm{O}-\right)$, 3.73-3.70 $\left(-\mathrm{ArCH}_{2} \mathrm{Ar}-,-\mathrm{ArOCH}_{3}, \mathrm{ArOCH}_{2}-\right), 3.53(-\mathrm{CHOH}), 2.92\left(-\mathrm{NHCH}_{2}-\right), 2.13\left(-\mathrm{ArCH}_{3}\right)$, 1.34-1.20 $\left(-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-\right) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta=156.7,147.8,146.3,130.9$, 129.3, 116.1, 115.1, 73.0, 71.1, 68.3, 67.9, 65.6, 60.3, 56.1, 35.6, 29.8, 26.4, 19.2.

6b-2: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta=7.08-7.02(-\mathrm{NH}), 6.80(-\mathrm{ArH}), 6.50(-\mathrm{ArH}), 5.09(-$ $\left.\mathrm{CH}_{2} \mathrm{OH}\right), 4.78\left(-\mathrm{OCH}\left(\mathrm{CH}_{2} \mathrm{OH}\right) \mathrm{CH}_{2}-\right)$, 3.99-3.90 $\left(-\mathrm{CH}_{2} \mathrm{OH},-\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{O}-,-\mathrm{CH}_{2} \mathrm{O}-\right), 3.73$ $\left(-\mathrm{ArCH}_{2} \mathrm{Ar}-,-\mathrm{ArOCH}_{3}, \mathrm{ArOCH}_{2}-\right), 3.53(-\mathrm{CHOH}), 2.70\left(-\mathrm{NHCH}_{2}-\right), 2.14\left(-\mathrm{ArCH}_{3}\right), 1.45-0.84(-$ $\left.\mathrm{CH}_{2}-,-\mathrm{CH} 3\right) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d ${ }_{6}$) $\delta=157.3,147.8,146.3,130.9,129.3,116.2$, 115.1, 71.1, 70.5, 67.9, 63.3, 56.1, 35.7, 31.9, 19.2.

6c-2: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta=6.85-6.80$ (-ArH), 6.53-6.49 (-ArH), 5.18 ($\left.\mathrm{CH}_{2} \mathrm{OH}\right)$, 5.07-5.01 $\left(-\mathrm{OCH}\left(\mathrm{CH}_{2} \mathrm{O}\right)_{2}-\right)$, 4.80-4.79 $\left(-\mathrm{OCH}\left(\mathrm{CH}_{2} \mathrm{OH}\right) \mathrm{CH}_{2}-\right)$, 4.59-4.52, 4.38-4.34, 4.10-3.99 $\left(-\mathrm{CH}_{2} \mathrm{OH},-\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{O}-,-\mathrm{CH}_{2} \mathrm{O}-\right), 3.74-3.71\left(-\mathrm{ArCH}_{2} \mathrm{Ar}-,-\mathrm{ArOCH}_{3}, \mathrm{ArOCH}_{2}-\right.$), 3.55 (- CHOH), 3.41-3.31 (-NH), 2.15-5.14 $\left(-\mathrm{ArCH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{DMSO}_{6}\right) \delta=$ $155.3, \quad 148.0,147.6,146.6,146.3,145.8,131.1,130.4,128.8,117.2,115.6,115.3,115.1,75.6$, $71.1,70.5,69.7,66.5,63.3,56.1,35.5,19.1$.

Figure S1. ${ }^{1} \mathrm{H}$ NMR of bisepoxide $2(500 \mathrm{MHz} \mathrm{CDCl} 3$).

Figure S2. ${ }^{13} \mathrm{C}$ NMR of bisepoxide $2(125 \mathrm{MHz} \mathrm{CDCl} 3)$.

Figure S3. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{6 b - 2}$ (500 MHz , DMSO-d6).

Figure S4. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{6 b - 2}(125 \mathrm{MHz}$, DMSO-d6).

Figure S5. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{6 c - 2}$ and bis(cyclic carbonate) (500 MHz , DMSO-d6).

Figure S6. ${ }^{13} \mathrm{C}$ NMR spectrum of $6 \mathrm{c}-2$ and bis(cyclic carbonate) (125 MHz , DMSO-d6).

Figure S7. GPC analysis of $\mathbf{6 a - 1}, \mathrm{Mn}=23000 \mathrm{~g} / \mathrm{mol}, \mathrm{PDI}=1.9$.

Figure S8. GPC analysis of $\mathbf{6 a - 2}, \mathrm{Mn}=30000 \mathrm{~g} / \mathrm{mol}, \mathrm{PDI}=1.7$.

Figure S9. GPC analysis of $\mathbf{6 a - 3}, \mathrm{Mn}=46000 \mathrm{~g} / \mathrm{mol}, \mathrm{PDI}=1.5$.

Figure S10. XRD patterns of NIPUs

