TMEDAO₂ Facilitates Atom Economical/Open Atmosphere Ley–Griffith (TPAP) Tandem Oxidation-Wittig Reactions

Supplementary Information

Christopher D. G. Read, Peter W. Moore and Craig M. Williams*

Table of Contents

S2
S2
S2
S3
S3
S4
S4
S5
S5
S5
S6
S7
S15
S46
S47

1. General Experimental

Reactions were monitored using silica-60 F₂₅₄ TLC plates, visualised first under UV light then developed using a KMnO₄ dip. Column chromatography was undertaken using silica gel (flash silica gel, 230-400 mesh) using distilled solvents. All reagents and solvents were purified prior to use according to literature methods (D. D. Perin, W. L. F. Armarego, Purification of Laboratory Chemicals, 3rd ed., Pergamon Press, Oxford, England, 1988.) tetrapropylammonium perruthenate (97%) and fine chemicals were purchased from Sigma-Aldrich or Precious Metals Online. Dry DCM was freshly distilled from a CaH₂ still. NMR spectra were recorded using either a Bruker AV300 (300 MHz, 75 MHz), AV400 (400 MHz, 100 MHz) or AV500 (500 MHz, 125 MHz) instrument, with all data being processed using MestReNova software, version 9.1.0. Chemical shifts are given in parts per million (ppm) and referenced according to solvent; CDCl₃ (¹H δ : 7.26 ppm; ¹³C δ : 77.0 ppm), D₂O (¹H δ: 4.79 ppm, internal reference: dioxane ¹³C δ: 67.1 ppm), d_6 -DMSO (¹H δ: 2.50 ppm; ¹³C δ : 39.5 ppm). Coupling constants (*J*) are given in Hz. Gas Chromatography-Mass Spectrometry (GC-MS) was recorded using a GCMS-QP2010 Ultra machine with auto sampler and analysed using GCMSsolution, v4.20. Infra-red spectra were measured using a Perkin Elmer FT-IR spectrometer (Spectrum 2000). High resolution electrospray ionisation (HRESIMS) accurate mass measurements were recorded in positive mode on a Bruker MicroOTOF-Q (quadrupole-time of flight) instrument with a Bruker ESI source using sodium formate as a reference calibrant. Microanalyses were performed by the University of Queensland Microanalytical Service.

2. Synthesis of Reagents and Starting Material

2.1 TMEDAO₂•4 H_2O (6)

Hydrogen peroxide (9.0 mL, 90 mmol, 30%) was added to a wide necked round bottom flask and cooled to 0°C. TMEDA (2.7 mL, 18 mmol) was added drop-wise over 5 minutes and then stirred at 0°C for 30 minutes. The solution was allowed to warm to room temperature before being concentrated under reduced pressure (60 °C, 20 Torr, behind a blast shield). Water (3.0 mL) was added and the reaction mixture again concentrated under reduced pressure, followed by drying under high vacuum, providing TMEDAO₂ 4H₂O (**6**, 3.805 g, 95%) as a white solid. TMEDAO₂ 4H₂O (**6**) was stored in a desiccator. IR and ¹H NMR data matched that reported by Gelbard *et. al.*¹

¹H NMR (300 MHz, D₂O): δ (ppm): 3.90(s, 4H), 3.30(s, 12H) ¹³C NMR (100 MHz, D₂O, Dioxane reference): δ (ppm): 63.0(CH₂), 59.2(CH₃). IR (neat, cm⁻¹): 1697 (w), 1483 (m), 1467 (m), 1458 (m), 1439 (m), 1399 (m), 1289 (w), 1182 (w), 969 (s), 940 (s), 759 (s). HRMS *m*/*z* C₆H₁₆N₂O₂H⁺ [M+H]⁺, Calculated: 149.1285, Found: 149.1288.

2.2. O-Vanillin Alkylation (8b)

O-vanillin was alkylated with 2-bromopropane following the method of Couture, *et. al.*² A clear oil was obtained in 90% yield.

2.3 Sodium Borohydride Reduction Protocol

Aldehyde or ketone (1.0 eq.) was dissolved in methanol (0.6 M solution) and cooled to 0 °C. NaBH₄ (1.5 eq.) was then added, and the reaction stirred for 5 minutes at 0 °C followed by warming to room temperature until deemed complete by TLC (0.5 - 2 hrs). The reaction was quenched with water, stirred for 10 minutes, and then concentrated under reduced pressure to half volume. The remaining solution was extracted with Et₂O, the organic fractions were combined, washed with brine, dried over MgSO₄ or Na₂SO₄ and filtered. The crude alcohol was purified by flash chromatography (ethyl acetate / petroleum spirit) as required.

Alcohols synthesised by this method: (2-isopropoxy-3-methoxyphenyl)methanol, 4-bromobenzyl alcohol, (*E*)-2-methyl-3-phenylprop-2-en-1-ol, (*E*)-3-(2-methoxyphenyl)prop-2-en-1-ol, 1-phenylethan-1-ol, 4-isopropylbenzyl alcohol, 4-(hydroxymethyl)benzonitrile, and 2-(trifluoromethyl)benzyl alcohol.

2.4 Synthesis of Diol (15)

The method of Lipshutz *et. al.*³ was followed. However, the extraction method for **15** was modified such that the residue was dissolved in DCM and extracted using water. The aqueous layers were combined and washed with fresh DCM, then concentrated to afford 3-(4-(hydroxymethyl)phenyl)propan-1-ol (**15**) (53% yield) as a clear oil. The data of **19** and **15** matched that reported by Lipshutz B. H., *et. al.*³

19: ¹H NMR (300 MHz, CDCl₃): δ (ppm): 10.00(s, 1H), 7.83(d, *J* = 8.5 Hz, 2H), 7.57(d, *J* = 8.2 Hz, 2H), 4.53(d, *J* = 5.9 Hz, 2H), 1.86(t, *J* = 6.0 Hz, 1H); GC-MS *m*/*z* (ion, % relative intensity): 160([M]⁺, 41), 131([M-CHO]⁺, 100), 129([M-CH₃O]⁺, 5), 77([M-C₄H₄O₂]⁺, 43).

15: ¹H NMR (300 MHz, CDCl₃): δ (ppm): 7.29(d, J = 8.2 Hz, 2H), 8.17(d, J = 8.2 Hz, 2H), 4.65(s, 2H), 3.66(t, J = 6.4 Hz, 2H), 2.70(t, J = 6.4 Hz, 2H), 1.87(m, 3H), 1.46(s, br, 1H); GC-MS *m*/*z* (ion, % relative intensity): 166([M]⁺, 38), 148([M-O]⁺, 20), 147([M-HO]⁺, 9), 133([M-CH₃O]⁺, 28), 119([M-C₂H₅O]⁺, 13), 105([M-C₂H₇O]⁺, 37), 104([M-C₂H₄O₂]⁺, 18), 77([M-C₄H₈O₂]⁺, 44).

3. Alcohol Oxidation Protocol

Alcohol (1.0 mmol) was added to a dry flask containing anhydrous DCM (2.0 mL) and powdered 4Å molecular sieves (500 mg / mmol) under an argon atmosphere. TMEDAO₂ (Treated as TMEDAO₂•4H₂O, Mw = 220.27 g/mol, 165 mg, 0.75 mmol) was added and the reaction stirred for 5 minutes before addition of TPAP (17.6 mg, 5 mol%). The reaction was stirred for 4 hrs before the mixture was passed through a silica plug using Et₂O and concentrated under reduced pressure. The crude reaction products were purified by flash chromatography (solvent system ranging from 1:7 EtOAc:Pet. ether to 1:2 EtOAc:Pet. ether or 1:3 Et₂O:Pentane to 1:1 Et₂O:Pentane).

4. Tandem Protocol (Method A)

Alcohol (1.0 mmol) was dissolved in DCM (2.0 mL), TMEDAO₂ (165 mg, 0.75 mmol) and (carbethoxymethylene)triphenylphosphorane (366 mg, 1.05 mmol) were added and the reaction was stirred for 5 minutes. TPAP (17.6 mg, 5 mol%) was then added and the reaction mixture was left to stir for 24 hours. The reaction mixture was then passed through a silica plug using Et_2O (75 mL) and concentrated. Purification by flash chromatography (solvent system ranging from 1:14 EtOAc:Pet. ether to 1:3 EtOAc:Pet. ether) provided the desired product.

5. Tandem Protocol (Method B)

Alcohol (1.0 mmol) was dissolved in DCM (2.0 mL), TMEDAO₂ (165 mg, 0.75 mmol) was then added and the reaction was stirred for 5 minutes. TPAP (17.6 mg, 5 mol%) was added and the reaction mixture was left to stir for 8 hrs. Phosphorane (697 mg, 2.0 mmol) was added and the reaction was refluxed for 16 hrs. The reaction mixture was then passed through a silica plug using Et_2O (75 mL) and concentrated. Purification by flash chromatography (solvent system ranging from 1:7 EtOAc:Pet. ether to 1:2 EtOAc:Pet. ether) provided the desired product.

6. Tandem Protocol (Method C)

Alcohol (1.0 mmol) was dissolved in DCM (2.0 mL), TMEDAO₂ (165 mg, 0.75 mmol) was then added and the reaction was stirred for 5 minutes. TPAP (17.6 mg, 5 mol%) was added and the reaction mixture was left to stir for 8 hours. Phosphorane (697 mg, 2.0 mmol) was added and the reaction was heated to reflux for 16 hrs. A further addition of phosphorane (697 mg, 2.0 mmol) was made and the reaction continued at reflux for a further 8 hrs. The reaction mixture was then passed through a silica plug using Et₂O (75 mL) and concentrated. Purification by flash chromatography (solvent system ranging from 1:7 EtOAc:Pet. ether to 1:2 EtOAc:Pet. ether) provided the desired product.

7. Tandem Protocol (Method D)

3-(4-(Hydroxymethyl)phenyl)propan-1-ol (**15**) (166.05 mg, 1.0 mmol), TMEDAO₂ (110.1 mg, 0.50 mmol), (carbethoxymethylene) triphenylphosphorane (697 mg, 2.0 mmol), and DCM (2.0 mL) were added to a round bottom flask and stirred for 5 minutes. TPAP (17.6 mg, 5 mol%) was added and the reaction mixture was left to stir for 24 hours. The reaction mixture was then passed through a silica plug using Et_2O (75 mL) and concentrated. Purification by column chromatography (40% EtOAc:Petroleum Ether) gave the final product **16** (113.6 mg, 49% [78% BRSM]), and by-products **17** (22 mg, 7% [11% BRSM]) and **18** (9.9 mg, 4% [7% BRSM]).

8. Analytical Data of Isolated Products 4-Methoxybenzaldehyde (8a)

MeO

Clear oil, 88% yield. Data matched that reported by Chen *et. al.*⁴ ¹H NMR (300 MHz, CDCl₃): δ (ppm): 9.89(s, 1H), 7.85(d, J = 9.0 Hz, 2H), 7.01(d, J = 9.0 Hz, 2H), 3.90 (s, 3H).

2-lsopropoxy-3-methoxybenzaldehyde (8b)

Clear oil, 90% data matched that reported by Couture et. al.²

¹H NMR (300 MHz, CDCl₃): δ (ppm): 10.46(s, 1H), 7.42(dd, *J* = 6.8, 2.6 Hz, 1H), 7.14-7.08(m, 2H), 4.63(sep, *J* = 6.0, 3.0 Hz, 1H), 3.88(s, 3H), 1.33(d, *J* = 6.2 Hz, 6H).

4-Bromobenzaldehyde (8c)

White solid, 46% yield. Data matched that reported by Couture et. al.²

Br¹H NMR (300 MHz, CDCl₃): δ (ppm): 9.98(s, 1H), 7.75(d, J = 9.0 Hz, 2H), 7.69(d, J = 9.0 Hz, 2H).

Methyl 4-formylbenzoate (8d)

White solid, 69% yield. Data matched that reported by Pelletier *et. al.*⁵

¹H NMR (400 MHz, CDCl₃): δ (ppm): 10.11(s, 1H), 8.20(d, *J* = 8.0 Hz, 2H), 7.96(d, *J* = 8.0 Hz, 2H), 3.97(s, 3H).

Cinnamaldehyde (8e)

Yellow oil, 78% yield. Data matched that reported by Chen et. al.4

¹H NMR (400 MHz, CDCl₃): δ (ppm): 9.71(d, *J* = 7.9 Hz, 1H), 7.60-7.41(m, 6H), 6.75(dd, *J* = 15.8, 7.6 Hz, 1H).

(E)-2-Methyl-3-phenylacrylaldehyde (8e)

Pale yellow oil, 85% yield. Data matched that reported by Dohi et. al. ⁶

¹H NMR (400 MHz, CDCl₃): δ (ppm): 9.60(s, 1H), 7.54(d, J = 8.0 Hz, 2H), 7.48-7.38(m, 3H), 7.28(s, 1H), 2.09(d, J = 1.3 Hz, 3H).

(E)-2-Methoxycinnamaldehyde (8g)

Yellow solid, 77% yield. Data matched that reported by Zhu et. al.7

¹H NMR (400 MHz, CDCl₃): δ (ppm): 9.69(d, J = 8.0 Hz, 1H), 7.84(d, J = 16.0 Hz, 1H), 7.55(m, 1H), 7.41(m, 1H), 7.00(t, J = 8.0 Hz, 1H), 6.95(d, J = 8.0 Hz, 1H), 6.79(dd, J = 16.0, 8.0 Hz, 1H), 3.92(s, 3H).

(1S,5R)-6,6-dimethylbicyclo[3.1.1]hept-2-ene-2-carbaldehyde (Myrtenal, 8h)

Clear oil, 67% yield. Data matched that reported by dos Santos et. al.⁸

¹H NMR (300 MHz, CDCl₃): δ (ppm): 9.44(s, 1H), 6.71(m, 1H), 2.87(t, *J* = 6.0 Hz, 1H), 2.59-2.55(m, 2H), 2.49(m, 1H), 2.19(m, 1H), 1.34(s, 3H),

1.05(d, J = 9.0 Hz, 1H), 0.74(s, 3H).

(S)-(-)-Perillaldehyde (8i)

Clear oil, 75% yield. Data matched that reported by Lu.⁹

¹H NMR (300 MHz, CDCl₃): δ (ppm): 9.44(s, 1H), 6.83(m, 1H), 4.76(d, *J* = 14.5 Hz, 2H), 2.52-2.43(m, 2H), 2.31-2.22(m, 2H), 2.15(m, 1H),

1.93(m, 1H), 1.77(s, 3H), 1.46(m, 1H).

Acetophenone (8j)

Clear oil, 75% yield. Data matched that reported by Yuan et.al.¹⁰

 ^1H NMR (300 MHz, CDCl_3): δ (ppm): 7.98-7.95(m, 2H), 7.57(m, 1H), 7.49-7.44(m, 2H), 2.61(s, 3H).

Benzophenone (8k)

White solid, 61% yield. Data matched that reported by Yuan, et. al.¹⁰

¹H NMR (300 MHz, CDCl₃): δ (ppm): 7.83-7.80(m, 4H), 7.62-7.57(m, 2H), 7.52-7.47(m, 4H).

Citronellal (3,7-Dimethyloct-6-enal, 8l)

Clear oil, 47% yield. Data matched that reported by He et. al.11

¹H NMR (400 MHz, CDCl₃): δ (ppm): 9.77(t, J = 4.0 Hz, 1H), 5.10(t, J = 8.0 Hz, 1H), 2.42(ddd, J = 16.0, 5.6, 1.9 Hz, 1H), 2.24(ddd, J = 15.9, 8.0, 2.5 Hz, 1H), 2.11-1.98(m, 3H), 1.70(s, 3H), 1.62(s, 3H), 1.42-1.26(m, 2H), 0.99(d, J = 8.0 Hz, 2H), 0.90 (m, 1H).

Ethyl cinnamate (10a)

Method A: Clear oil, 89% yield [E:Z, 16:1]. Data matched that reported by Lebel *et. al.*¹²

¹H NMR (400 MHz, CDCl₃): δ (ppm): 7.69(d, J = 16.0 Hz, 1H), 7.54-7.52(m, 2H), 7.39-7.37(m, 3H), 6.44(d, J = 16.0 Hz, 1H), 4.27(q, J = 7.0 Hz, 2H), 1.33(t, J = 8.0 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃): δ (ppm): 167.1, 144.7, 134.6, 130.4, 129.0, 128.1, 118.5, 60.7, 14.5; GC-MS *m*/*z* (ion, % relative intensity): 176([M]⁺, 31), 131([M-C₂H₅O]⁺, 100), 103(M⁺-C₃H₅O₂, 45), 77(M⁺-C₅H₇O₂, 24).

Ethyl (*E*)-3-(4-isopropylphenyl)acrylate (10b)

Method A: Clear oil, 83% yield [E:Z 40:1]. Data matched that reported by Ohkawa *et.al.*¹³

¹H NMR (400 MHz, CDCl₃): δ (ppm): 7.68(d, J = 16.1 Hz, 1H), 7.47(d, J = 7.9 Hz, 2H), 7.26(d, J = 8.2 Hz, 2H), 6.41(d, J = 15.8 Hz, 1H), 4.27(g, J = 7.3 Hz, 2H), 2.94(sep, J = 6.8 Hz, 1H), 1.36(t,

J = 7.0 Hz, 3H), 1.27(d, J = 7.0 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm): 167.2, 151.5, 144.6, 132.1, 128.1, 127.0, 117.2, 60.4, 34.1, 23.8, 14.3; GC-MS: m/z (ion, % relative intensity): 218([M]⁺, 64), 203([M-CH₃]⁺, 100), 175([M-C₃H₇]⁺, 13), 173([M-C₂H₅O]⁺, 20).

Ethyl (*E*)-(4-methoxyphenyl)acrylate (10c)

Method A: Clear oil, 83% yield [*E*:*Z*, 20:1]. Data matched that reported by Hyotanishi *et. al.*¹⁴

¹H NMR (300MHz, CDCl₃): δ (ppm): 7.64(d, J = 16.0 Hz, 1H), 7.47(d, J = 9.0 Hz, 2H), 6.89(d, J = 8.8 Hz, 2H), 6.30(d, J = 16.0 Hz, 1H), 4.25(q, J = 9.0 Hz, 2H), 3.83(s, 3H), 1.33(t, J = 9.0 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃): δ (ppm): 167.5, 161.5, 144.4, 129.8, 127.4, 115.9, 114.5, 60.5, 55.5, 14.5; GC-MS *m*/*z* (ion, % relative intensity): 206([M]⁺, 67), 161([M-C₂H₅O]⁺, 100), 133([M-C₃H₅O₂]⁺, 41).

Ethyl (*E*)-(2-isopropoxy-3-methoxyphenyl)acrylate (10d)

Method A: Clear oil, 63% yield [E:Z, 4:1].

¹H NMR (400 MHz, CDCl₃): δ (ppm): 8.08(d, J = 16.2 Hz, 1H), 7.17(dd, J = 8.0, 1.2 Hz, 1H), 7.03(t, J = 8.0 Hz, 1H), 6.92(dd, J = 8.0, 1.2 Hz, 1H), 6.43(d, J = 16.2 Hz, 1H), 4.45(septet, J = 8.0 Hz, 1H), 4.26(q, J = 8.0 Hz, 2H), 3.85(s, 3H), 1.34(t, J = 8.0 Hz, 3H), 1.30(d, J

= 8.0 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃): δ (ppm): 167.1, 153.4, 146.4, 140.3, 129.7, 123.6, 118.9, 118.8, 113.7, 76.1, 60.3, 55.8, 22.4, 14.3; GC-MS: m/z (ion, % relative intensity): 264([M]⁺, 11), 222([M-C₃H₇]⁺, 21), 176([M-C₄H₆O₂]⁺, 100), 134([M-C₆H₁₀O₃]⁺, 6), 77([M-C₉H₁₇O₄]⁺, 7); IR (neat, cm⁻¹): 2976 (w), 1709 (m), 1632 (w), 1577 (w), 1262 (s), 1214 (m), 1105 (m), 776 (m), 737(m); Anal. Calcd. for C₁₅H₂₀O₄: C, 68.16; H, 7.63 O, 24.21. Found: C, 68.11; H, 7.71; O, 24.18; HRMS: *m/z* C₁₅H₂₀O₄Na⁺ [M+Na]⁺, Calculated: 287.1254, Found: 287.1262.

Ethyl (*E*)-3-(benzo[d][1,3]dioxol-5-yl)acrylate (10e)

OFt

Method A: Clear oil, 90% yield [*E*:*Z* 11:1]. Data matched that reported by Leung *et.al.*¹⁵

¹H NMR (400 MHz, CDCl₃): δ (ppm): 7.60(d, J = 15.8 Hz, 1H), 7.04(d, J = 1.8 Hz, 1H), 7.01(ddd, J = 7.9, 1.8, 0.5 Hz, 1H), 6.82(d, J = 7.9 Hz, 1H), 6.27(d, J = 16.1 Hz, 1H), 6.02(s, 2H), 4.26(q, J = 7.2 Hz, 2H), 1.34(t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm): 167.2, 149.5, 148.3, 144.3, 128.9, 124.4, 116.2, 108.5, 106.5, 101.5, 60.4, 14.3; GC-MS: m/z (ion, % relative intensity): 220([M]⁺, 100), 175([M-HO]⁺, 66), 147([M-C₂H₅O]⁺, 13).

Ethyl (*E*)-(4-bromophenyl)acrylate (10f)

Method A: Clear oil, 95% yield [*E*:*Z*, 11:1]. Data matched that reported by Peñafiel *et. al.*¹⁶

¹H NMR (500 MHz, CDCl₃): δ (ppm): 7.61(d, J = 16.0 Hz, 1H), 7.52(d, J = 8.4 Hz, 2H), 7.39(d, J = 8.4 Hz, 2H), 6.42(d, J = 16.0

Hz, 1H), 4.27(q, *J* = 10.0, 5.0 Hz, 2H), 1.34(t, *J* = 10.0, 5.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm): 166.7, 143.2, 133.4, 132.1, 129.4, 124.5, 119.0, 60.6, 14.3; GC-MS *m/z* (ion, % relative intensity): 256/254([M]⁺, ⁷⁹Br/⁸¹Br, 41/40), 211/209([M-C₂H₅O]⁺, ⁷⁹Br/⁸¹Br, 91/90), 183/181([M-C₃H₅O₂]⁺, ⁷⁹Br/⁸¹Br, 24/21), 102([M-C₃H₅O₂Br]⁺, 100).

Ethyl (*E*)-(4-nitrophenyl)acrylate (10g)

Method A,: White solid, 80% yield [*E*:*Z*, 16:1]. Data matched that reported by Sharma *et. al.*¹⁷

¹H NMR (400 MHz, CDCl₃): δ (ppm): 8.25(d, J = 9.0 Hz, 2H), 7.73(d, J = 16.0 Hz, 1H), 7.70(d, J = 8.5 Hz, 2H), 6.56(d, J = 16.0

Hz, 1H), 4.29(q, J = 8.0 Hz, 2H), 1.35(t, J = 8.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm): 166.0, 148.5, 141.6, 140.6, 128.6, 124.2, 122.6, 61.0, 14.3; GC-MS *m*/*z* (ion, % relative intensity): 221([M]⁺, 25), 192([M-C₂H₅]⁺, 8), 176([M-C₂H₅O]⁺, 100).

Ethyl (*E*)-3-(3-methyl-4-nitrophenyl)acrylate (10h)

Method A: Clear oil, 77% yield [E:Z 11:1].

¹H NMR (400 MHz, CDCl₃): δ (ppm): 8.00(d, J = 8.2 Hz, 1H), 7.65(d, J = 16.1 Hz, 1H), 7.50-7.46(m, 2H), 6.52(d, J = 15.8 Hz, 1H), 4.29(q, J = 7.1 Hz, 2H), 2.63(s, 3H), 1.35(t, J = 7.0 Hz, 3H);

¹³C NMR (100 MHz, CDCl₃): δ (ppm): 166.1, 149.5, 141.7, 138.9, 134.3, 132.3, 125.9, 125.4, 122.0, 60.9, 20.6, 14.2; GC-MS: m/z (ion, % relative intensity): 235([M]⁺, 24), 219([M–O]⁺, 13), 190([M–C₂H₅O]⁺, 100), 144([M–C₂H₅O₃N]⁺, 72); IR (neat, cm⁻¹): 3117(w), 3045(w), 2992(w), 1717(s), 16419(m), 1609(m), 1512(s), 1327(s), 1291(s), 1159(s), 1032(s), 981(s), 826(s), 760(s), 676(m); Anal. Calcd for C₁₂H₁₃NO₄: C, 61.27; H, 5.57; N, 5.95. Found: C, 61.07; H, 5.64; N, 6.00; HRMS: *m/z* C₁₂H₁₃NO₄Na⁺ [M+Na]⁺, Calcd. 258.0737, Found 258.0747.

Ethyl (E)-3-(4-cyanophenyl)acrylate (10i)

Method A: Clear oil, 80% yield [*E*:*Z* 10:1]. Data matched that reported by Leung *et.al.*¹⁵

¹H NMR (400 MHz, CDCl₃): δ (ppm): 7.71-7.61(m, 5H), 6.52(d, J = 15.8 Hz, 1H), 4.29(q, J = 7.1 Hz, 2H), 1.36(t, J = 7.2 Hz, 3H); ¹³C

NMR (100 MHz, CDCl₃): δ (ppm): 166.1, 142.1, 138.7, 132.6, 128.3, 121.8, 118.4, 113.3,

60.9, 14.2; GC-MS: m/z (ion, % relative intensity): 201($[M]^+$, 23), 156($[M-C_2H_5O]^+$, 100), 128($[M-C_3H_5O_2]^+$, 53).

Ethyl (*E*)-(4-methylbenzanoate)acrylate (10j)

Method A: White solid, 87% yield [*E*:*Z*, 14:1]. Data matched that reported by Chintareddy *et. al*.¹⁸

¹H NMR (300 MHz, CDCl₃): δ (ppm): 8.05(d, *J* = 8.0, 2H), 7.70 (d, *J* = 16.0 Hz, 1H) 7.58(d, *J* = 8.0, 2H), 6.52(d, *J* = 16.0 Hz, 1H), 4.28(q, *J* = 7.0 Hz, 2H), 3.93(s, 3H), 1.35(t, *J* = 7.0 Hz, 2H), 3.93(s, 3H), 1.35(t, *J* = 7.0 Hz, 2H), 3.93(s, 3H), 1.35(t, *J* = 7.0 Hz, 2H), 3.93(s, 3H), 3.93(s, 3H),

3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm): 166.6, 166.5, 143.2, 138.8, 131.4, 130.2, 128.0, 120.8, 60.9, 52.4, 14.4; GC-MS *m*/*z* (ion, % relative intensity): 234([M]⁺, 86), 189([M-C₂H₅O]⁺, 100), 175([M-C₂H₃O₂]⁺, 60), 161([M-C₃H₅O₂]⁺, 7).

Ethyl (*E*)-3-(2-(trifluoromethyl)phenyl)acrylate (10k)

Method A: Clear oil, 77% yield [*E*:*Z*, 12:1]. Data matched that reported by Wang *et.al.*¹⁹

¹H NMR (400 MHz, CDCl₃): δ (ppm): 8.07(dq, J = 15.6, 2.3 Hz, 1H), 7.73-7.70(m, 2H), 7.58(m, 1H), 7.49(t, J = 7.3 Hz, 1H), 6.42(d, J = 15.8

Hz, 1H), 4.30(q, J = 7.0 Hz, 2H), 1.36(t, J = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm): 166.1, 140.0, 133.5, 132.1, 129.5, 127.9, 126.1 (q, J = 5.7 Hz), 125.3, 122.6, 60.8, 14.3; GC-MS: m/z (ion, % relative intensity): 244([M]⁺, 18), 199([M-C₂H₅O]⁺, 100), 175([M-CF₃]⁺, 62), 171([M-C₃H₅O₂]⁺, 26).

Ethyl (E)-(furan-2-yl)acrylate (10l)

Method A: Orange oil, 70% [*E*:*Z*, 7:1] yield. Data matched that reported by Chintareddy *et. al.*¹⁸

¹H NMR (300 MHz, CDCl₃): δ (ppm): 7.48(m, 1H), 7.43(d, J = 18.0 Hz, 1H), 6.60(d, J = 3.0 Hz, 1H), 6.47(dd, J = 3.0, 1.9 Hz, 1H), 6.32(d, J = 18.0 Hz, 1H), 4.23(q, J = 6.0 Hz, 2H), 1.32(t, J = 6.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm): 167.1, 151.0, 144.7, 131.0, 116.0, 114.6, 112.2, 60.4, 14.3; GC-MS *m*/*z* (ion, % relative intensity): 166([M]⁺, 22), 121([M-C₂H₅O]⁺, 100), 93([M-C₂H₅O₂]⁺, 13).

Ethyl (2*E*,4*E*)-5-(2-methoxyphenyl)penta-2,4-dienoate (10m)

Method A: Clear oil, 82% yield [*EE*:*EZ*, 6:1]. Data matched that reported by Magrioti *et. al.*²⁰

¹H NMR (300 MHz, CDCl₃): δ (ppm): 7.52-7.47(m, 2H), 7.31-7.23(m, 2H), 6.98-6.88(m, 3H), 5.96(d, J = 15.0 Hz, 1H), 4.32(q, J

= 7.0 Hz, 2H), 3.88(s, 3H), 1.31(t, J = 7.0 Hz, 3H) ¹³C NMR (75 MHz, CDCl₃): δ (ppm): 167.2, 157.4, 145.5, 135.5, 130.1, 127.3, 126.8, 125.1, 120.7, 120.6, 111.1, 60.2, 55.5, 14.3; GC-MS *m*/*z* (ion, % relative intensity): 232([M]⁺, 5), 159([M-C₃H₅O₂]⁺, 24).

Ethyl (E)-7-phenylhept-2-enoate (10n)

Method A: Clear oil, 42% yield [E:Z, 9:1]. Data matched that reported by Ghogare *et. al.*²¹

¹H NMR (400 MHz, CDCl₃): δ (ppm): 7.31-7.24(m, 2H), 7.21-7.16(m, 3H), 6.96(dt, *J* =15.6, 7.0 Hz, 1H), 5.81(dt, *J* = 15.6, 1.5 Hz, 1H), 4.19(q, *J* = 7.0 Hz, 2H), 2.63(t, *J* = 7.6 Hz, 2H), 2.23(qd, *J* = 7.3, 1.5 Hz, 2H), 1.70-1.62(m, 2H), 1.57-1.45(m, 2H), 1.29(t, *J* = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm): 166.7, 149.0, 142.2, 128.4, 128.3, 125.7, 121.4, 60.1, 35.7, 32.0, 31.0, 27.6, 14.3. GC-MS: m/z (ion, % relative intensity): 232([M]⁺, 8), 159([M-C₃H₅O₂]⁺, 12), 158([M-C₃H₆O₂]⁺, 29), 91([M-C₈H₁₃O₂]⁺, 100).

Ethyl (E)-5,9-dimethyldeca-2,8-dienoate (10o)

Method A: Clear oil, 48% yield [E:Z, 6:1]. Data matched that reported by Lebel *et. al.*¹²

¹H NMR (300 MHz, CDCl₃): δ (ppm): 6.94(dt, *J* = 15.0, 7.5 Hz, 1H), 5.81(d, *J* = 15.0 Hz, 1H), 5.08(m, 1H), 4.19(q, *J* = 6.0 Hz, 2H), 2.20(m, 1H), 2.09-1.94(m, 3H), 1.68(s, 3H), 1.64(m, 1H), 1.60(s, 3H), 1.37(m, 1H), 1.29(t, *J* = 7.0 Hz, 3H), 1.17(m, 1H), 0.91(d, *J* = 7.0 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃): δ (ppm): 166.7, 148.2, 131.5, 124.4, 122.4, 60.1, 39.6, 36.7, 32.0, 25.7, 25.5, 19.5, 17.7, 14.3; GC-MS *m*/*z* (ion, % relative intensity): 224([M]⁺, 2), 209([M-CH₃]⁺, 3), 179([M-C₂H₅O]⁺, 6), 155([M-C₅H₉]⁺, 4), 151([M-C₃H₅O₃]⁺, 5), 141([M-C₆H₁₁]⁺, 14), 125([M-C₅H₇O₂]⁺, 10), 83([M-C₈H₁₃O₂]⁺, 8), 69([M-C₉H₁₅O₂]⁺, 100), 55([M-C₁₀H₁₇O₂]⁺, 40).

Benzyl (E)-(4-methoxyphenyl)acrylate (14a)

Method B: Clear oil, 84% yield [E:Z, 14:1]. Data matched that reported by El-Batta *et.al.*²²

MeO ¹H NMR (300 MHz, CDCl₃): δ (ppm): 7.73(d, J = 15.9 Hz, 1H), 7.47(d, J = 8.8 Hz, 2H), 7.44-7.33(m, 5H), 6.91(d, J = 8.8 Hz, 2H), 6.39(d, J = 15.9 Hz, 1H), 5.28(s, 2H), 3.81(s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ (ppm): 166.7, 161.1, 144.5, 135.9, 129.4, 128.2, 127.9, 127.8, 126.7, 115.0, 114.0, 65.8, 55.0; GC-MS *m/z* (ion, % relative intensity): 268([M]⁺, 52), 177([M-C₁₁H₁₂]⁺, 10), 161([M-C₇H₇O]⁺, 60), 135([M-C₉H₉O]⁺, 9), 133([M-C₈H₇O₂]⁺, 24), 107([M-C₁₀H₉O₂]⁺, 3), 77([M-C₁₁H₁₂O₃]⁺, 16).

Benzyl (E)-(4-nitrophenyl)acrylate (14b)

Method B,: White solid, 54% yield [*E*:*Z*, 10:1]. Data matched that reported by Echavarren *et.al.*²³

¹H NMR (400 MHz, CDCl₃): δ (ppm): 8.25(d, J = 8.7 Hz, 2H), 7.75(d, J = 16.0 Hz, 1H), 7.67(d, J = 8.6 Hz, 2H), 7.44-7.35(m,

5H), 6.60(d, J = 16.0 Hz ,1H), 5.28(s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm): 165.8, 148.5, 142.1, 140.4, 135.6, 128.7, 128.6, 128.5, 128.4, 124.2, 122.2, 66.8; GC-MS m/z (ion, % relative intensity): 283([M]⁺, 2), 266([M–O]⁺, 11), 238([M–O₂N]⁺, 24),

 $192([M-C_{7}H_{7}]^{+}, 18), 176([M-C_{7}H_{7}O]^{+}, 35), 107([M-C_{9}H_{6}O_{3}N]^{+}, 6), 91([M-C_{9}H_{6}O_{4}N]^{+}, 100), 77([M-C_{10}H_{8}O_{4}N]^{+}, 10).$

(*E*)-1-(4-Methoxyphenyl)but-1-en-3-one (14c)

Method B: White Solid, 75% yield [*E*:*Z*, >99%E]. Data matched that reported by Solin *et.al.*²⁴

MeO¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.53-7.45(m, 3H), 6.95-6.90(m, 2H), 6.61(d, J = 16.3 Hz, 1H), 3.85(s, 3H), 2.36(s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 198.5, 161.7, 143.4, 130.1, 127.2, 125.2, 114.6, 55.6, 27.6; GC-MS *m/z* (ion, % relative intensity): 176([M]⁺, 49), 161([M–CH₃]⁺, 100), 145([M–CH₃O]⁺, 14), 133([M–C₂H₅O]⁺, 45), 77([M–C₅H₈O₂]⁺, 12).

(*E*)-1-(4-Nitrophenyl)but-1-en-3-one (14d)

Method B: Pale Yellow Solid, 45% yield [*E*:*Z*, 11:1]. Data matched that reported by Leung *et.al.*¹⁵

⁰₂N¹H NMR (400 MHz, CDCl₃) δ (ppm): 8.29-8.22(m, 2H), 7.72-7.66(m, 2H), 7.53(d, *J* = 16.3 Hz, 1H), 6.82(d, *J* = 16.3 Hz, 1H), 2.42(s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 197.6, 148.7, 140.8, 140.2, 130.5, 128.9, 124.4, 28.2; GC-MS *m/z* (ion, % relative intensity): 191([M]⁺, 25), 176([M-CH₃]⁺, 100), 146([M-NO₂]⁺, 9), 77([M-C₄H₅NO₃]⁺, 6).

(E)-4-Methoxycinnamonitrile (14e)

CN Method C: Clear oil, 88% yield [*E*:*Z*, 3:1]. Data matched that reported by Qin *et.al.*²⁵

¹H NMR (300 MHz, CDCl₃): δ (ppm): 7.42-7.37(m, 2H), 7.33(d, J = 16.5 Hz, 1H), 6.98-6.88(m, 2H), 5.71(d, J = 16.6 Hz, 1H), 3.85(s, 3H). ¹³C NMR (75 MHz, CDCl₃): δ (ppm): 162.0, 150.0, 129.0, 126.3, 118.7, 114.5, 93.4, 55.4; GC-MS *m/z* (ion, % relative intensity): 159([M]⁺, 100), 144([M-CH₃]⁺, 31), 129([M-CH₃O]⁺, 11), 77([M-C₄H₅NO]⁺, 4).

(*E*)-4-Nitrocinnamonitrile (14f)

Method B: Pale Yellow Solid, 21% yield [E:Z, 3:1]. Data matched that reported by Zhou *et.al.*²⁶

¹H NMR (300 MHz, d_6 -DMSO) δ (ppm): 8.32-8.24(m, 2H), 7.96-7.89(m, 2H), 7.82(d, J = 16.8 Hz, 1H), 6.73(d, J = 16.7 Hz, 1H). ¹³C NMR (75 MHz, d_6 -DMSO) δ (ppm): 148.2, 146.7, 139.8, 128.9, 124.1, 118.1, 101.4; GC-MS m/z (ion, % relative intensity): 174([M]⁺, 100), 128([M-NO₂]⁺, 69), 77([M-C₃H₂N₂O₂]⁺, 51).

Ethyl (E)-3-(4-(3-hydroxypropyl)phenyl)acrylate (16)

но

Method D: Pale Yellow oil, 49% [77% BRSM] yield.

¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.67(d, J = 16.0 Hz, 1H), 7.45(d, J = 8.1 Hz, 2H), 7.22(d, J = 8.0 Hz, 2H),

6.40(d, *J* = 16.0 Hz, 1H), 4.26(q, *J* = 7.1 Hz, 2H), 3.73-3.64(m, 2H), 2.77-2.70(m, 2H), 1.94-1.85(m, 2H), 1.34(t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 167.1, 144.5, 144.4, 132.2, 129.0, 128.2, 117.4, 62.1, 60.4, 33.9, 31.9, 14.3; GC-MS *m/z* (ion, % relative intensity): 234([M]⁺, 100), 205([M-C₂H₅]⁺, 8), 203([M-CH₃O]⁺, 58), 189([M-C₂H₅O]⁺, 50), 175([M-C₃H₇O]⁺, 22), 161([M-C₃H₅O₂]⁺, 36), 77([M-C₁₁H₁₁O₂]⁺, 14); IR (neat, cm⁻¹): 3352 (br, w), 2936 (w), 1706 (s), 1634 (s), 1310 (m), 1173 (s), 1036 (m); Anal. Calcd. for C₁₄H₁₈O₃: C, 71.77; H, 7.74; O, 20.49. Found: C, 71.09; H, 7.82; O, 21.09; HRMS: m/z C₁₄H₁₈O₃Na⁺ [M+Na]⁺, Calculated: 257.1148, Found: 257.1150.

Ethyl (E)-5-(4-((E)-3-ethoxy-3-oxoprop-1-en-1-yl)phenyl)pent-2-enoate (17)

Method D: Clear oil, 7% [11% BRSM] yield. Data matched that reported by Panther *et.al.* ²⁷

¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.66(d, J = 16.1 Hz, 1H), 7.46(d, J = 7.6 Hz, 2H), 7.20(d, J = 7.7 Hz,

2H), 6.97(dt, J = 15.6, 6.8 Hz, 1H), 6.40(d, J = 16.0 Hz, 1H), 5.84(dt, J = 15.6, 1.6 Hz, 1H), 4.26(q, J = 7.1 Hz, 2H), 4.18(q, J = 7.0 Hz, 2H), 2.83-2.73(m, 2H), 2.57(m, 2H), 1.34(t, J = 7.1 Hz, 3H), 1.28(t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 167.1, 166.4, 147.5, 144.3, 143.3, 133.6, 132.5, 128.9, 128.2, 122.1, 117.6, 60.4, 60.2, 34.2, 33.5, 14.3; GC-MS *m*/*z* (ion, % relative intensity): 302([M]⁺, 7), 257([M-C₂H₅O]⁺, 8), 211([M-C₄H₁₀O₂]⁺, 4), 189([M-C₆H₉O₂]⁺, 100).

9. NMR Spectra

ppm

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm

7.7.7 7.47 7.67 7.47 7.7.7 7.57 7.7.7 7.56 6.40 6.40 6.41 4.26 7.37 3.73 3.69 4.26 1.94 4.26 1.95 4.26 1.95

11. References

- 1) (a)Bigley, M. J.; Radigan, K. J.; Nathan, L. C., *Inorg. Chim. Acta* **1976**, *16*, 209-212; (b)Gelbard, G.; Raison, F.; Roditi-Lachter, E., et al., *J. Mol. Catal. A: Chem.* **1996**, *114*, 77-85.
- 2) Couture, A.; Deniau, E.; Grandclaudon, P., et al., *Tetrahedron: Asymmetry* 2003, 14, 1309-1316.
- 3) Lipshutz, B. H.; Hageman, M.; Fennewald, J. C., et al., *Chem. Commun. (Cambridge, U. K.)* **2014,** *50*, 11378-11381.
- 4) Chen, C.; Liu, B.; Chen, W., Synthesis 2013, 45, 3387-3391.
- 5) Pelletier, G.; Bechara, W. S.; Charette, A. B., J. Am. Chem. Soc. 2010, 132, 12817.
- 6) Dohi, T.; Fukushima, K.-i.; Kamitanaka, T., et al., *Green Chem.* **2012**, *14*, 1493-1501.
- 7) Zhu, J.; Liu, J.; Ma, R., et al., Adv. Synth. Catal. 2009, 351, 1229-1232.
- 8) dos Santos, R. B.; Brocksom, T. J.; Brocksom, U., Tetrahedron Lett. 1997, 38, 745-748.
- 9) Lin, C.-K.; Lu, T.-J., *Tetrahedron* **2010**, *66*, 9688-9693.
- 10) Yuan, Y.; Shi, X.; Liu, W., Synlett 2011, 2011, 559-564.
- 11) He, R.; Toy, P. H.; Lam, Y., Adv. Synth. Catal. 2008, 350, 54-60.
- 12) Lebel, H.; Davi, M., Adv. Synth. Catal. 2008, 350, 2352-2358.
- 13) Ohkawa, S.; Tsukamoto, T.; Kiyota, Y., et al. Cannabinoid Receptor Modulator. WO/2005/000829, 6 Jan, 2005.
- 14) Hyotanishi, M.; Isomura, Y.; Yamamoto, H., et al., Chem. Commun. (Cambridge, U. K.) 2011, 47, 5750.
- 15) Leung, P. S.-W.; Teng, Y.; Toy, P. H., Org. Lett. 2010, 12, 4996-4999.
- 16) Peñafiel, I.; Pastor, I. M.; Yus, M., Eur. J. Org. Chem. 2012, 2012, 3151-3156.
- 17) Sharma, D.; Kumar, S.; Shil, A. K., et al., *Tetrahedron Lett.* **2012**, *53*, 7044.
- 18) Chintareddy, V. R.; Ellern, A.; Verkade, J. G., J. Org. Chem. 2010, 75, 7166-7174.
- 19) Li, P.; Wang, L.; Zhang, L., et al., Adv. Synth. Catal. 2012, 354, 1307-1318.
- 20) Magrioti, V.; Nikolaou, A.; Smyrniotou, A., et al., Bioorg. Med. Chem. 2013, 21, 5823.
- 21) Narsaiah, A. V.; Ghogare, R. S., Synthesis 2011, 2011, 3271-3276.
- 22) El-Batta, A.; Jiang, C.; Zhao, W., et al., J. Org. Chem. 2007, 72, 5244-5259.
- 23) Echavarren, A. M.; Stille, J. K., J. Am. Chem. Soc. 1987, 109, 5478-5486.
- 24) Solin, N.; Han, L.; Che, S., et al., Catal. Commun. 2009, 10, 1386-1389.
- 25) Qin, C.; Jiao, N., J. Am. Chem. Soc. 2010, 132, 15893-15895.
- 26) Zhou, W.; Xu, J.; Zhang, L., et al., Org. Lett. 2010, 12, 2888-2891.
- 27) Panther, J., Arkivoc 2012, 2012, 297-297.