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Experimental Details

Materials: CeCl3-7H,O (trace metal basis, 99.9%), Ca(NOs),-4H,O (99.0%),
Mn(NO3),-4H,0 (purum p.a., > 97.0%), carboxymethyl cellulose (fibers), ZnO nanoparticles
(<50 nm), and other reagents were purchased from Sigma-Aldrich (St. Louis, USA) and used
without purification.

Preparation of CeO, fibers: For synthesis of CeO, fibers, 2 g of carboxymethyl cellulose
(CMC) was immersed in 50 ml of different concentrations of CeCl3-7H,0 solution (1 ~ 4
mM). After 30 minutes of incubation under ambient condition, CMC was separated, washed
with deionized water, and calcinated at different temperatures (800 ~ 1000 °C) for 2 hours.
Synthesis of ZnO fibers: ZnO fibers was prepared 5 g of CMC and 50 ml of Zn(NOs3),-6H,0
solution (0.2 mM). Mixture solution was incubated under ambient condition for 30 minutes.
The CMC was separated, washed with deionized water and calcinated at 500 °C for 2 hours.
Preparation of CaMn,0, fibers: CaMn,QO, fibers were prepared with a different amount of
CMC (0.05 ~ 4 g) and a solution of 40 ml of Ca(NO)3-4H,0 (25 mM) and Mn(NOQO)3-4H,0
(62.5 mM). CaMn,O, fibers were obtained by calcinating CMC at 1000 °C under air
atmosphere for 2 hours.

Synthesis of g-C3N4 powder: g-C3N,4 was prepared according to the previous literature. Briefly,

3 g of dicyandiamide in alumina crucible was calcinated at 600 °C under air for 4 hours.



Characterization: The morphologies of each sample were observed using a S-4800 field
emission scanning electron microscopy (Hitachi Co., Japan) at an electron acceleration
voltage of 5 ~ 10 kV. The X-ray diffraction patterns were recorded using a D/MAX-RB X-
ray diffractometer (Rigaku Co., Japan) with a scan rate of 4 °/min, range of 10 °~ 70 °, and a
Cu Ko radiation wavelength of 1.5418 A. Absorbance spectra were obtained using a UV-
visible spectrophotometer (Jasco Inc., Japan) with a diffuse-reflectance mode. The mass
change as a function of temperature in the isothermal mode was measured using a Setsys
16/18 thermal analyzer (Setaram, France) with a heating rate of 10 °C/min and a temperature
range of 25 ~ 800 °C under air. The surface charges of Ce**-CMC fibers dispersion in
deionized water at pH 7.0 were investigated by zeta-potential measurements using a Zetasizer
nano zs (Malvern, UK). The FT-IR spectra of Ce®**-CMC fibers, HCI and NaOH treated CMC
fibers were obtained using a FT-IR 200 spectrophotometer (Jasco Inc., Japan). The amount of
adsorbed metal ions in CMC fibers was measured using an Agilent ICP-MS 7700S
inductively coupled with a plasma mass spectrometer (Agilent, USA). A spectrofluorometric
study was conducted using an RF-5301PC (Shimadzu Co., Japan) with an excitation
wavelength of 320 nm. X-ray photoelectron spectroscopic analysis was carried out using a K-
alpha (Thermo VG Scientific, UK) in the range of 0 — 1300 eV. We measured pore size and
surface area of CeO, fibers by Brunauer-Emmett-Teller (BET) method using ASAP 2020 N,
gas sorption analyzer (Micromeritics, USA).

Methylene blue (MB) degradation test: A reactive solution was prepared by mixing 30 mg of
CeO, samples (CeO, fibers and bulk CeO,) in a 30 mL of MB solution (26.7 uM). The
reactive solution was incubated and stabilized in the dark for 4 hours with vigorous stirring to
complete the equilibrium of adsorption-desorption of MB molecules on the surface of CeO,

samples before visible light irradiation. The solution was irradiated by a xenon lamp (450 W)



with a 420 nm cut-off filter. To analyze the degree of MB degradation, the absorbance of the
reaction solution at 665 nm was measured after removing CeO, samples by centrifugation.
Preparation of g-C3N4/ZnO nanoparticle and g-C3N4/ZnQO fiber: Hybridization of g-C3N4 and
ZnO was carried out with different amount of g-C3Na4. g-C3N4 were dispersed in DI water by
sonication (20 mg in 50 ml). ZnO was also dispersed in DI water (100 mg in 10 ml), and
different amounts of g-CsN4 (1, 3, 5, and 10 wt% of g-C3N4) were added to the ZnO
dispersed aqueous solution. The mixture solution was incubated at 70 °C for overnight to
evaporate DI water. We conducted photochemical NADH regeneration with different g-
C3N4/ZnO nanoparticles (fibers) (1, 3, 5, and 10 wt%), and figured out the optimized g-C3N,
content (3 wt%) (data not shown).

Photochemical nicotineamide adenine dinucleotide (NADH) regeneration and
photoenzymatic synthesis of L-glutamate: The photochemical regeneration of NADH was
conducted visible light irradiation with a xenon lamp (450 W) at room temperature. The
reaction solution was prepared by dissolving 1 mM of NAD" and 250 pM of
[Cp*Rh(bpy)H.0]*" (M) in 3 mL of phosphate buffer (100 mM, pH 7.0) containing 15 w%
triethanolamine. ZnO fiber (100 mg), g-C3N4/ZnO nanoparticles (100 mg), g-C3sN4 powder (3
mg), and g-C3N4/ZnO fibers (100 mg) were dispersed in the reactive solution. The
concentration of NADH in reactive solution was measured by analyzing its absorbance at 340
nm using UV-visible spectrophotometer (Jasco Inc., Japan). For the photoenzymatic synthesis
of L-glutamate was coupled with photoregeneration of NADH using g-C3N4/ZnO (100 mg)
fiber. The reaction solution for the photoenzymatic reaction consisted of NAD" (1 mM),
[Cp*Rh(bpy)H.0]* (250 uM), o-ketoglutarate (5 mM), (NH4),SO, (100 mM) and GDH (40
U) in 3 mL of phosphate buffer (100 mM, pH 7.0) containing 15 w% triethanolamine.
Photocurrent measurement: Photo-electrodes were prepared by drop casting of each samples

(10 pg) on ITO glass (1 x 1 cm?). Photocurrent responses were measured with prepared



photo-electrodes as working electrodes, a platinum wire as a counter electrode, Ag/AgCI
reference electrode, and NaSO, (0.5 M) solution (as electrolyte) using WMPG 1000
potentiostat (WonATech, Korea). An applied potential for photo-electrodes against Ag/AgCl
was set to 0.3 V.

Electrochemical analysis of CaMn,0,4: Cyclic voltammetry (CV) was conducted using
WMPG 1000 potentiostat (WonATech, Korea) with CaMn,0, samples-Nafion (40 pg in 20
uL) deposited on glassy carbon electrode as a working electrode, a platinum wire as a counter
electrode, and an Ag/AgCI reference electrode. The electrochemical reaction was performed
in an O, saturated sodium phosphate solution (100 mM, pH 7.0) at room temperature with a

scan rate of 50 mV s™.



-CMC fibers

Figure S1. Photographs of Ce**-CMC fibers and free-standing CeO, synthesized from Ce®'-
CMC fibers.
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Figure S2. Surface analysis by EDX demonstrates that metal ions in the CMC fibers.
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Figure S3. Zeta potential analysis of Ce®" ion-adopted CMC fibers with the measured
amount of Ce** ions in CM-cellulose.
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Figure S4. (a) FT-IR spectra of pristine CMC fibers and Ce**-CMC fibers. FT-IR absorption
peaks corresponding to the stretching vibration modes of hydroxyl groups (~3400 cm™) and
carboxyl groups (~1400 cm™). (b) FT-IR spectra of HCI (acid) and NaOH (basic) treated
CMC fibers.



Figure S5. SEM images of CeO, fibers synthesized with different conditions [(a) 1 and (b) 4
mM of CeCls solution and calcination temperature of 800 <C with HCI treated CMC, (b) 1

and (c) 4 mM of CeCl; solution and calcination temperature of 800 < with NaOH treated
CMC].
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Figure S6. (a) Thermogravimetric analysis (TGA) and differential scanning calorimetry
(DSC) curves of Ce**-adopted CMC fibers [(I) evaporation of water; (I1) decomposition of
cellulose fiber; (I111) formation of CeO, phase; (IVV) burn out of carbon backbone]. (b)
Nitrogen adsorption-desorption isotherms and Barrett-Joyner-Halenda (BJH) pore size
distribution (inset) of CeO; fibers.
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Figure S7. XRD spectra of the (a) CeO,, (b) ZnO, and (c) CaMn,0q fibers.
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Figure S8. SEM images of CeO, fibers synthesized with different conditions [(a) 1 mM of
CeCl; solution and calcination temperature of 800 <C, (b) 4 mM of CeCl; solution and

calcination temperature of 1000 <C, and (c) 20 mM CeCl3 solution with 800 <C calcination

temperature].



Figure S9. SEM images of CaMn,0, synthesized with different amount of CM-cellulose; (a)
0.5g, (b) 4 g, and (c) 6 g under identical experimental condition of precursor concentration
and calcination temperature [1 mmole of Ca(NO)3-4H,0 and 2.5 mmole of Mn(NO)3-4H,0
in 40 ml of deionized water and calcination temperature of 1000 °C under the air].
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Figure S10. (a) SEM image of CeO, nanoparticles (purchased from Sigma-Aldrich Co., < 25
nm). (b) XRD spectrum showing the corresponding X-ray diffraction pattern of crystalline

CeO,.
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Figure S11. UV-visible absorbance spectra of (a) CeO, nanoparticles and (b) CeO, fibers
synthesized using CMC. The inset spectra shows the relationship between the transformed
Kubelka-Munk function versus photon energy for CeO, samples.
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Figure S12. XPS spectra of CeO, fibers (synthesized with 4 mM of CeCl; solution and

calcination temperature of 800 €C), and CeO, nanoparticles (< 25 nm, purchased from Sigma

Aldrich): (A) Ce 3d, and (B) O1s. The concentrations of Ce®" ions on the surface of CeO,
fibers and CeO, nanoparticles were calculated as 10.4% and 6.8%, respectively.
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Figure S13. Fluorescence spectra of 2-hydroxyl terephthalate (TA-OH") produced by MB and

CeO, fibers (shown in Figure 1a) during photocatalytic reaction. In the case of CeO;
nanoparticles, TA-OH was not generated (inset).
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Figure S14. Characterizations of prepared g-CsN, powder using TEM and UV-visible
spectrophotometer. (a) TEM images of g-C3sN4 powder exhibit a sheet-like two dimensional
sheet-like structures in different magnifications. (b) UV-visible spectrum of g-C3N, powder
shows the strong absorption band in the range of 400-600 nm.
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Figure S15. DRS spectra of ZnO fibers and g-C3N4/ZnO fibers, and a photograph of ZnO
fibers and g-C3N4/ZnO fibers (inset). ZnO fiber had no absorbance in the visible light range.
[black solid line] After hybridization with g-C3Na, g-C3N4/ZnO fibers exhibit increased
absorbance in the range of 400-600 nm. [red solid line]
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Figure S16. Proposed mechanism of an electron transfer between g-CsN4and ZnO fiber, and
photochemical NADH regeneration with gC3sN4/ZnO fiber through an electron mediator (M =

[Cp*Rh(bpy)H20]*"].
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Figure S17. Photocurrent response for bare g-CsN4, g-C3N4/ZnO nanoparticles, and g-
C3N4/Zn0O fibers under visible light irradiation.

Figure S18. SEM image of bulk CaMn,O, synthesized using conventional hydrothermal
method.

15



(a) Calp 3451eVY
=
S 350.0 eV
b/
E‘ CaMn,0, fibers 1
%] : 1
c 1 '
] i !
£ 1 i
Bulk CaMn,0, | i
i :
i :

354 352 350 348 346 344
Binding Energy / eV

(b) Mn 2p 2p32 641.2 eV
2py;; 650.3 eV
v

CaMn,0, fibers

Intensity / A.U.

Bulk CaMn;0,4

660 655 650 645 640 635
Binding Energy / eV

0O1s

(

O
—

529.1 eV

CaMn,0, fibers

Intensity / A.U.

Bulk CaMn,0,

536 534 532 530 528 526
Binding Energy / eV

Figure S19. XPS spectra of Ca 2p, Mn 2p, and O 1s of CaMn,O, fibers and Bulk CaMn,O,.
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