Electronic Supplementary Information

Carboxymethyl cellulose-templated synthesis of hierarchically structured metal oxides

Jong Wan Ko, Byung Il Lee, You Jung Chung, Chan Beum Park* Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon 305-701, Republic of Korea

Experimental Details

Materials: CeCl₃·7H₂O (trace metal basis, 99.9%), Ca(NO₃)₂·4H₂O (99.0%), Mn(NO₃)₂·4H₂O (purum p.a., > 97.0%), carboxymethyl cellulose (fibers), ZnO nanoparticles (< 50 nm), and other reagents were purchased from Sigma-Aldrich (St. Louis, USA) and used without purification.

*Preparation of CeO*₂ *fibers:* For synthesis of CeO₂ fibers, 2 g of carboxymethyl cellulose (CMC) was immersed in 50 ml of different concentrations of CeCl₃·7H₂O solution (1 ~ 4 mM). After 30 minutes of incubation under ambient condition, CMC was separated, washed with deionized water, and calcinated at different temperatures (800 ~ 1000 °C) for 2 hours. *Synthesis of ZnO fibers:* ZnO fibers was prepared 5 g of CMC and 50 ml of Zn(NO₃)₂·6H₂O solution (0.2 mM). Mixture solution was incubated under ambient condition for 30 minutes.

The CMC was separated, washed with deionized water and calcinated at 500 °C for 2 hours.

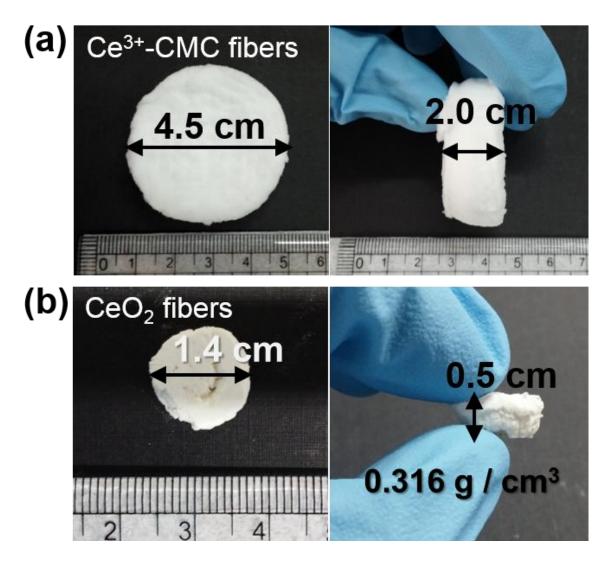
Preparation of CaMn₂O₄ fibers: CaMn₂O₄ fibers were prepared with a different amount of CMC (0.05 ~ 4 g) and a solution of 40 ml of Ca(NO)₃·4H₂O (25 mM) and Mn(NO)₃·4H₂O (62.5 mM). CaMn₂O₄ fibers were obtained by calcinating CMC at 1000 °C under air atmosphere for 2 hours.

*Synthesis of g-C*₃ N_4 *powder:* g-C₃ N_4 was prepared according to the previous literature. Briefly, 3 g of dicyandiamide in alumina crucible was calcinated at 600 °C under air for 4 hours.

Characterization: The morphologies of each sample were observed using a S-4800 field emission scanning electron microscopy (Hitachi Co., Japan) at an electron acceleration voltage of 5 ~ 10 kV. The X-ray diffraction patterns were recorded using a D/MAX-RB Xray diffractometer (Rigaku Co., Japan) with a scan rate of 4 °/min, range of 10 °~ 70 °, and a Cu Ka radiation wavelength of 1.5418 Å. Absorbance spectra were obtained using a UVvisible spectrophotometer (Jasco Inc., Japan) with a diffuse-reflectance mode. The mass change as a function of temperature in the isothermal mode was measured using a Setsys 16/18 thermal analyzer (Setaram, France) with a heating rate of 10 °C/min and a temperature range of 25 ~ 800 °C under air. The surface charges of Ce^{3+} -CMC fibers dispersion in deionized water at pH 7.0 were investigated by zeta-potential measurements using a Zetasizer nano zs (Malvern, UK). The FT-IR spectra of Ce³⁺-CMC fibers, HCl and NaOH treated CMC fibers were obtained using a FT-IR 200 spectrophotometer (Jasco Inc., Japan). The amount of adsorbed metal ions in CMC fibers was measured using an Agilent ICP-MS 7700S inductively coupled with a plasma mass spectrometer (Agilent, USA). A spectrofluorometric study was conducted using an RF-5301PC (Shimadzu Co., Japan) with an excitation wavelength of 320 nm. X-ray photoelectron spectroscopic analysis was carried out using a Kalpha (Thermo VG Scientific, UK) in the range of 0 - 1300 eV. We measured pore size and surface area of CeO₂ fibers by Brunauer-Emmett-Teller (BET) method using ASAP 2020 N₂ gas sorption analyzer (Micromeritics, USA).

Methylene blue (MB) degradation test: A reactive solution was prepared by mixing 30 mg of CeO₂ samples (CeO₂ fibers and bulk CeO₂) in a 30 mL of MB solution (26.7 μ M). The reactive solution was incubated and stabilized in the dark for 4 hours with vigorous stirring to complete the equilibrium of adsorption-desorption of MB molecules on the surface of CeO₂ samples before visible light irradiation. The solution was irradiated by a xenon lamp (450 W)

with a 420 nm cut-off filter. To analyze the degree of MB degradation, the absorbance of the reaction solution at 665 nm was measured after removing CeO_2 samples by centrifugation.


Preparation of g- C_3N_4/ZnO *nanoparticle and* g- C_3N_4/ZnO *fiber:* Hybridization of g- C_3N_4 and ZnO was carried out with different amount of g- C_3N_4 . g- C_3N_4 were dispersed in DI water by sonication (20 mg in 50 ml). ZnO was also dispersed in DI water (100 mg in 10 ml), and different amounts of g- C_3N_4 (1, 3, 5, and 10 wt% of g- C_3N_4) were added to the ZnO dispersed aqueous solution. The mixture solution was incubated at 70 °C for overnight to evaporate DI water. We conducted photochemical NADH regeneration with different g- C_3N_4/ZnO nanoparticles (fibers) (1, 3, 5, and 10 wt%), and figured out the optimized g- C_3N_4 content (3 wt%) (data not shown).

Photochemical nicotineamide adenine dinucleotide (NADH) regeneration and photoenzymatic synthesis of L-glutamate: The photochemical regeneration of NADH was conducted visible light irradiation with a xenon lamp (450 W) at room temperature. The reaction solution was prepared by dissolving 1 mM of NAD⁺ and 250 μ M of $[Cp*Rh(bpy)H_2O]^{2+}$ (M) in 3 mL of phosphate buffer (100 mM, pH 7.0) containing 15 w% triethanolamine. ZnO fiber (100 mg), g-C₃N₄/ZnO nanoparticles (100 mg), g-C₃N₄ powder (3 mg), and g-C₃N₄/ZnO fibers (100 mg) were dispersed in the reactive solution. The concentration of NADH in reactive solution was measured by analyzing its absorbance at 340 nm using UV-visible spectrophotometer (Jasco Inc., Japan). For the photoenzymatic synthesis of L-glutamate was coupled with photoregeneration of NADH using $g-C_3N_4/ZnO$ (100 mg) fiber. The reaction solution for the photoenzymatic reaction consisted of NAD⁺ (1 mM), $[Cp*Rh(bpy)H_2O]^{2+}$ (250 µM), α -ketoglutarate (5 mM), (NH₄)₂SO₄ (100 mM) and GDH (40 U) in 3 mL of phosphate buffer (100 mM, pH 7.0) containing 15 w% triethanolamine.

Photocurrent measurement: Photo-electrodes were prepared by drop casting of each samples (10 μ g) on ITO glass (1 x 1 cm²). Photocurrent responses were measured with prepared

photo-electrodes as working electrodes, a platinum wire as a counter electrode, Ag/AgCl reference electrode, and NaSO₄ (0.5 M) solution (as electrolyte) using WMPG 1000 potentiostat (WonATech, Korea). An applied potential for photo-electrodes against Ag/AgCl was set to 0.3 V.

*Electrochemical analysis of CaMn*₂*O*₄*:* Cyclic voltammetry (CV) was conducted using WMPG 1000 potentiostat (WonATech, Korea) with CaMn₂O₄ samples-Nafion (40 μ g in 20 μ L) deposited on glassy carbon electrode as a working electrode, a platinum wire as a counter electrode, and an Ag/AgCl reference electrode. The electrochemical reaction was performed in an O₂ saturated sodium phosphate solution (100 mM, pH 7.0) at room temperature with a scan rate of 50 mV s⁻¹.

Figure S1. Photographs of Ce^{3+} -CMC fibers and free-standing CeO_2 synthesized from Ce^{3+} -CMC fibers.

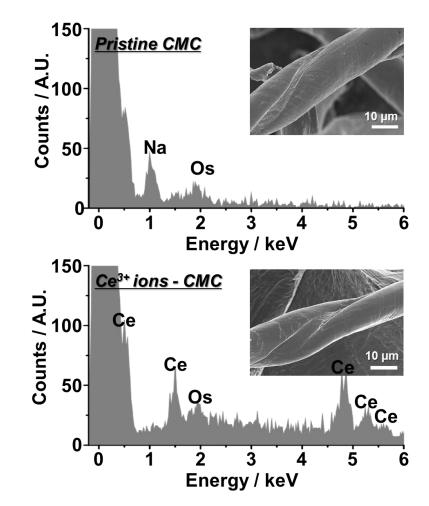
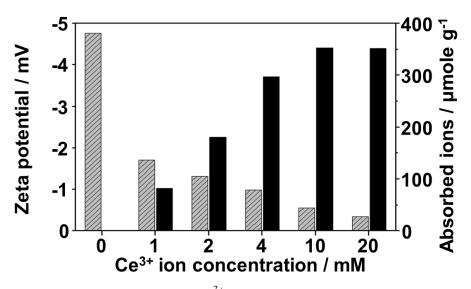
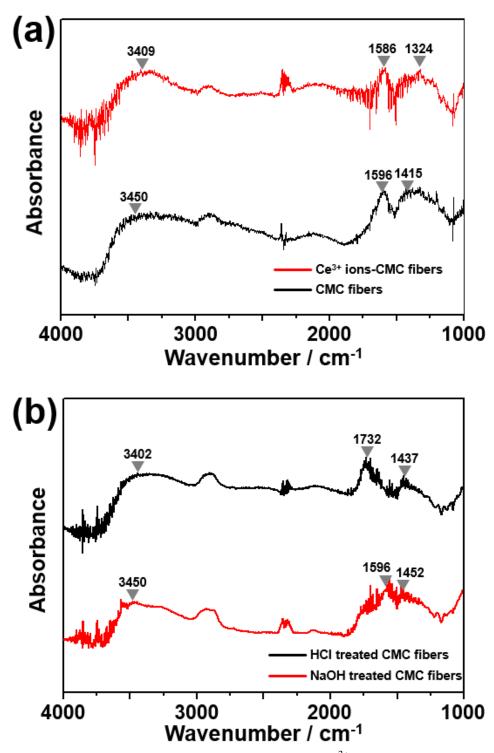
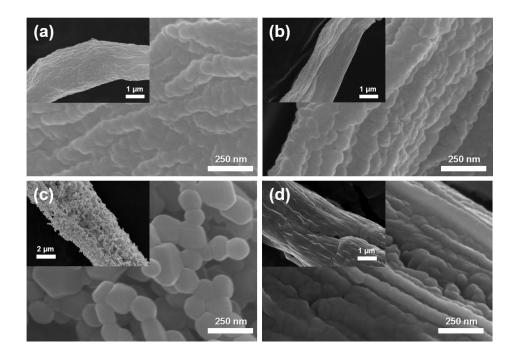


Figure S2. Surface analysis by EDX demonstrates that metal ions in the CMC fibers.

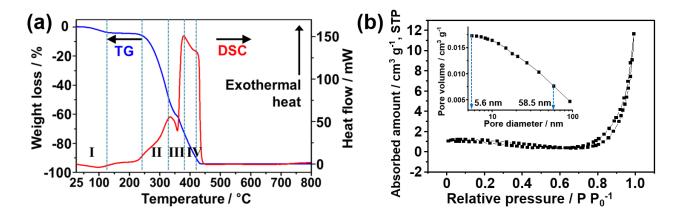
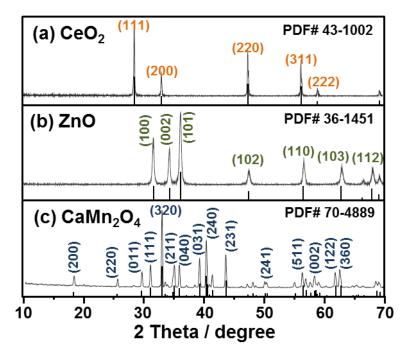
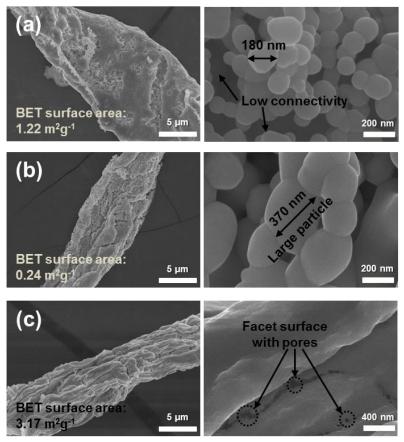
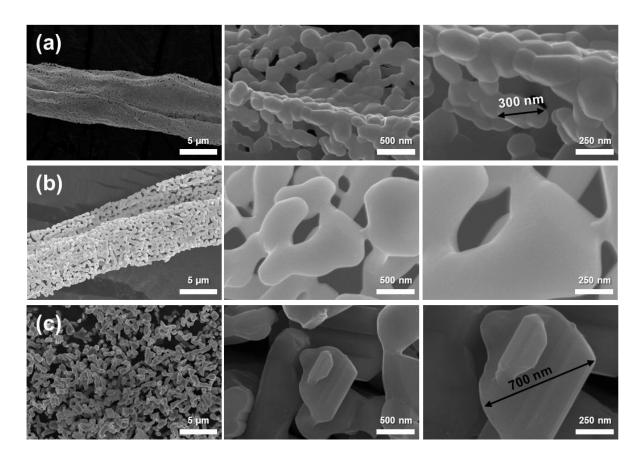

Figure S3. Zeta potential analysis of Ce^{3+} ion-adopted CMC fibers with the measured amount of Ce^{3+} ions in CM-cellulose.

Figure S4. (a) FT-IR spectra of pristine CMC fibers and Ce^{3+} -CMC fibers. FT-IR absorption peaks corresponding to the stretching vibration modes of hydroxyl groups (~3400 cm⁻¹) and carboxyl groups (~1400 cm⁻¹). (b) FT-IR spectra of HCl (acid) and NaOH (basic) treated CMC fibers.

Figure S5. SEM images of CeO₂ fibers synthesized with different conditions [(a) 1 and (b) 4 mM of CeCl₃ solution and calcination temperature of 800 $^{\circ}$ C with HCl treated CMC, (b) 1 and (c) 4 mM of CeCl₃ solution and calcination temperature of 800 $^{\circ}$ C with NaOH treated CMC].

Figure S6. (a) Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) curves of Ce^{3+} -adopted CMC fibers [(I) evaporation of water; (II) decomposition of cellulose fiber; (III) formation of CeO₂ phase; (IV) burn out of carbon backbone]. (b) Nitrogen adsorption-desorption isotherms and Barrett-Joyner-Halenda (BJH) pore size distribution (inset) of CeO₂ fibers.

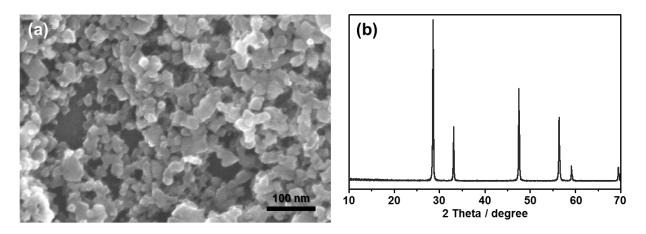
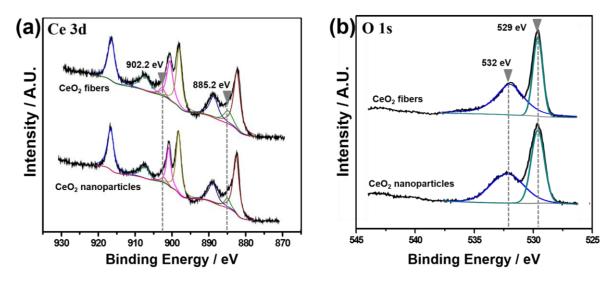
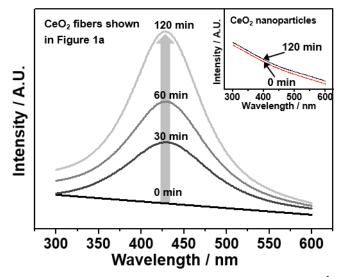
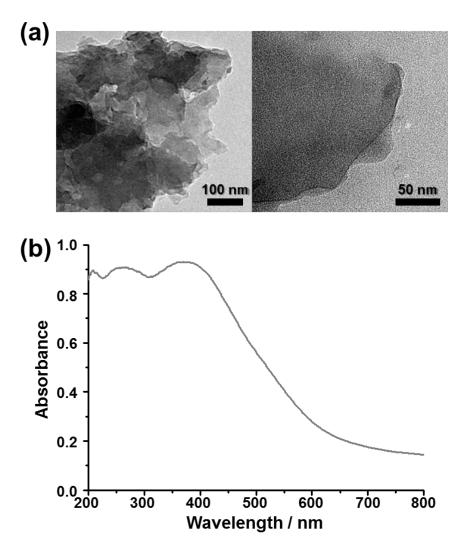
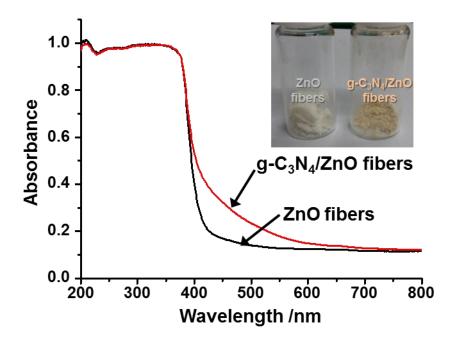

Figure S7. XRD spectra of the (a) CeO₂, (b) ZnO, and (c) CaMn₂O₄ fibers.

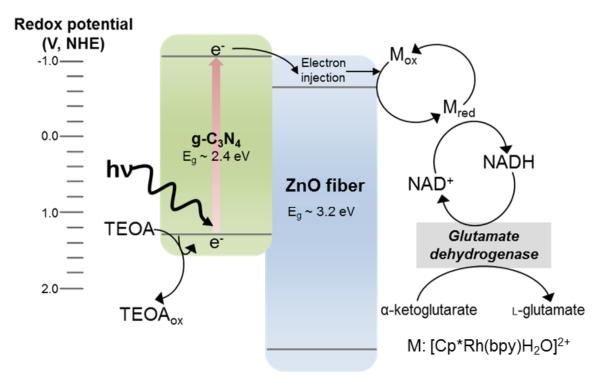
Figure S8. SEM images of CeO₂ fibers synthesized with different conditions [(a) 1 mM of CeCl₃ solution and calcination temperature of 800 °C, (b) 4 mM of CeCl₃ solution and calcination temperature of 1000 °C, and (c) 20 mM CeCl₃ solution with 800 °C calcination temperature].


Figure S9. SEM images of $CaMn_2O_4$ synthesized with different amount of CM-cellulose; (a) 0.5 g, (b) 4 g, and (c) 6 g under identical experimental condition of precursor concentration and calcination temperature [1 mmole of $Ca(NO)_3 \cdot 4H_2O$ and 2.5 mmole of $Mn(NO)_3 \cdot 4H_2O$ in 40 ml of deionized water and calcination temperature of 1000 °C under the air].


Figure S10. (a) SEM image of CeO_2 nanoparticles (purchased from Sigma-Aldrich Co., < 25 nm). (b) XRD spectrum showing the corresponding X-ray diffraction pattern of crystalline CeO_2 .


Figure S11. UV-visible absorbance spectra of (a) CeO_2 nanoparticles and (b) CeO_2 fibers synthesized using CMC. The inset spectra shows the relationship between the transformed Kubelka-Munk function versus photon energy for CeO_2 samples.


Figure S12. XPS spectra of CeO₂ fibers (synthesized with 4 mM of CeCl₃ solution and calcination temperature of 800 °C), and CeO₂ nanoparticles (< 25 nm, purchased from Sigma Aldrich): (A) Ce 3d, and (B) O1s. The concentrations of Ce³⁺ ions on the surface of CeO₂ fibers and CeO₂ nanoparticles were calculated as 10.4% and 6.8%, respectively.


Figure S13. Fluorescence spectra of 2-hydroxyl terephthalate (TA-OH) produced by MB and CeO_2 fibers (shown in Figure 1a) during photocatalytic reaction. In the case of CeO_2 nanoparticles, TA-OH was not generated (inset).

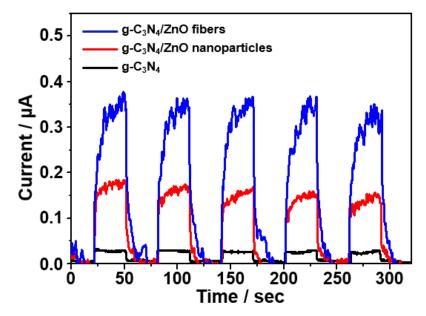

Figure S14. Characterizations of prepared $g-C_3N_4$ powder using TEM and UV-visible spectrophotometer. (a) TEM images of $g-C_3N_4$ powder exhibit a sheet-like two dimensional sheet-like structures in different magnifications. (b) UV-visible spectrum of $g-C_3N_4$ powder shows the strong absorption band in the range of 400-600 nm.

Figure S15. DRS spectra of ZnO fibers and $g-C_3N_4/ZnO$ fibers, and a photograph of ZnO fibers and $g-C_3N_4/ZnO$ fibers (inset). ZnO fiber had no absorbance in the visible light range. [black solid line] After hybridization with $g-C_3N_4$, $g-C_3N_4/ZnO$ fibers exhibit increased absorbance in the range of 400-600 nm. [red solid line]

Figure S16. Proposed mechanism of an electron transfer between $g-C_3N_4$ and ZnO fiber, and photochemical NADH regeneration with gC_3N_4/ZnO fiber through an electron mediator ($\mathbf{M} = [Cp*Rh(bpy)H_2O]^{2+}$].

Figure S17. Photocurrent response for bare $g-C_3N_4$, $g-C_3N_4/ZnO$ nanoparticles, and $g-C_3N_4/ZnO$ fibers under visible light irradiation.

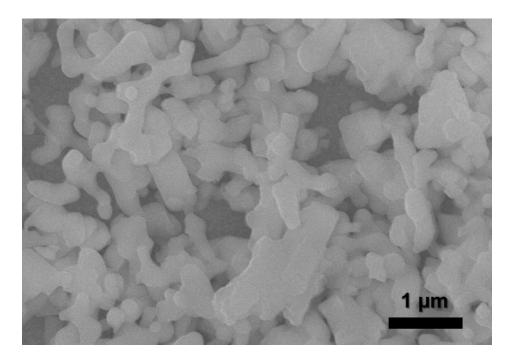


Figure S18. SEM image of bulk $CaMn_2O_4$ synthesized using conventional hydrothermal method.

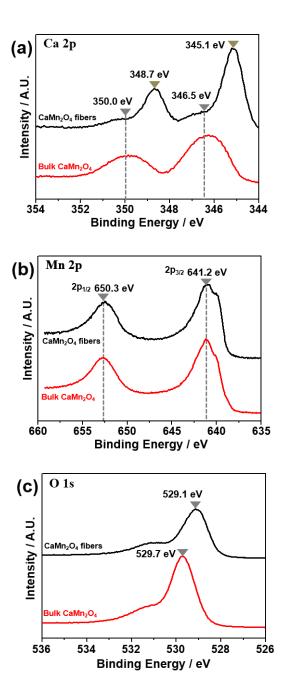


Figure S19. XPS spectra of Ca 2p, Mn 2p, and O 1s of CaMn₂O₄ fibers and Bulk CaMn₂O₄.