Electronic Supplementary Information (ESI) for

Catalytic transformation of bio-derived furans to valuable ketoacids

and diketones by water-soluble ruthenium catalysts

Kavita Gupta,^a Deepika Tyagi,^a Ambikesh D. Dwivedi,^a Shaikh M. Mobin^a and Sanjay K. Singh^{*a,b}

^aDiscipline of Chemistry, School of Basic Sciences, Indian Institute of Technology (IIT) Indore, Indore 452 017, Madhya Pradesh, India. E-mail: sksingh@iiti.ac.in ^bCentre for Material Science and Engineering, Indian Institute of Technology (IIT) Indore, Indore 452 017, Madhya Pradesh, India

Schematic presentation for the synthesis of arene-ruthenium(II) complexes

Single-crystal X-ray diffraction studies

Single crystal X-ray structural studies of **[Ru]-1** and **[Ru]-2** were executed on a CCD Agilent Technologies (Oxford Diffraction) SUPER NOVA diffractometer. Using graphitemonochromated Mo K α radiation ($\lambda \alpha = 0.71073$ Å) based diffraction, data were collected at 150(2) K by the standard 'phi-omega' scan techniques, then scaled and reduced using CrysAlisPro RED software. The extracted data were evaluated using the CrysAlisPro CCD software. The structures were solved by direct methods using SHELXS-97, and refined by full matrix least-squares with SHELXL-97, refining on *F2.*¹ The positions of all the atoms were determined by direct methods. All non-hydrogen atoms were refined anisotropically. The remaining hydrogen atoms were placed in geometrically constrained positions and refined with isotropic temperature factors, generally 1.2*Ueq* of their parent atoms. Crystal structures were drawn with the help of ORTEP-3 (Fig. 1). The crystal and refinement data are summarized in Table S1. Bond lengths and bond angles are summarized in Table S1 and S2 (†ESI). The CCDC numbers 1401711 and 1402536 contain the supplementary crystallographic data for **[Ru]-1** and **[Ru]-2** respectively.

References

 G. M. Sheldrick, *Acta Crystallogr. Sect. A*, 2008, 64, 112-122 (Program for Crystal Structure Solution and Refinement, University of Goettingen, Göttingen, Germany, 1997).

	[Ru]-1	[Ru]-2
Empirical formula	$C_{15}H_{14}ClN_2Ru$	$C_{19}H_{22}Cl_2N_2Ru$
Formula weight (g mol ⁻¹)	358	450.36
Temperature (K)	150(2)	150(2)
Wavelength (Å)	1.5418	1.5418
Crystal system	Triclinic	Monoclinic
Space group	<i>P</i> -1	<i>P</i> 21/c
Crystal size (mm)	0.33 x 0.26 x 0.21	0.33 x 0.26 x 0.21
<i>a</i> (Å)	7.6680(5)	17.0720(2)
<i>b</i> (Å)	8.3022(6)	12.30860(10)
<i>c</i> (Å)	13.5405(6)	9.10130(10)
α (°)	83.606(5)	90
β (°)	81.922(5)	100.9000(10)
γ (°)	70.403(6)	90
V (Å ³)	802.11(9)	1877.97(3)
Ζ	2	4
$ ho_{ m calcd} ({ m g \ cm^{-3}})$	1.76	1.593
μ (mm ⁻¹)	11.044	9.382
<i>F</i> (000)	424	912
θ range, (°)	3.30 to 72.68	4.46 to 71.35
Index ranges	-9<=h<=6;	-19<=h<=20;

 Table S1 Single crystal X-ray refinement data for complexes [Ru]-1 and [Ru]-2

	-9<=k<=10;	-14<=k<=13;
	-16<=l<=16	-11<=1<=9
Completeness to θ_{max}	94.6%	98.4 %
No. of data collected/unique data	4800 / 3022 [<i>R</i> (int) =	11844 / 3586 [R(int) =
	0.0300]	0.0199]
Absorption correction	Semi-empirical from	Semi-empirical from
	equivalents	equivalents
No. of parameters/restraints	3022 / 0 / 208	0.2433 and 0.1478
Refinement method	full-matrix least-squares	full-matrix least-squares
	on F^2	on F^2
Goodness of fit on F^2	on <i>F</i> ² 1.093	on <i>F</i> ² 1.057
Goodness of fit on F^2 R1 [$I > 2\sigma(I)$]	on F ² 1.093 R1 = 0.0489	on <i>F</i> ² 1.057 0.0267
Goodness of fit on F^2 R1 [$I > 2\sigma(I)$] wR2 [$I > 2\sigma(I)$]	on F ² 1.093 R1 = 0.0489 0.1363	on F ² 1.057 0.0267 0.0705
Goodness of fit on F^2 R1 [$I > 2\sigma(I)$] wR2 [$I > 2\sigma(I)$] R indices (all data)	on F ² 1.093 R1 = 0.0489 0.1363 R1 = 0.0493, wR2 =	on F ² 1.057 0.0267 0.0705 R1 = 0.0271, wR2 =
Goodness of fit on F^2 R1 [$I > 2\sigma(I)$] wR2 [$I > 2\sigma(I)$] R indices (all data)	on F ² 1.093 R1 = 0.0489 0.1363 R1 = 0.0493, wR2 = 0.1368	on <i>F</i> ² 1.057 0.0267 0.0705 R1 = 0.0271, wR2 = 0.0709

[Ru]-1		[Ru]-2	
Ru(1)-N(1)	2.097(4)	Ru(1)-N(1)	2.0940(18)
Ru(1)-N(2)	2.126(4)	Ru(1)-N(2)	2.1336(18)
Ru(1)-C(12)	2.164(5)	Ru(1)-C(15)	2.164(2)
Ru(1)-C(14)	2.175(5)	Ru(1)-C(13)	2.167(2)
Ru(1)-C(11)	2.184(5)	Ru(1)-C(16)	2.189(2)
Ru(1)-C(10)	2.186(5)	Ru(1)-C(12)	2.193(2)
Ru(1)-C(13)	2.195(5)	Ru(1)-C(14)	2.198(2)
Ru(1)-C(15)	2.201(5)	Ru(1)-C(11)	2.223(2)
N(2)-H(2A)	2.4085(11)	Ru(1)-Cl(1)	2.3984(6)
N(2)-H(2B)	1.322(7)	N(1)-C(1)	1.325(3)
C(1)-C(2)	1.376(6)	N(1)-C(9)	1.375(3)
C(2)-C(3)	1.443(6)	N(2)-C(8)	1.452(3)
C(3)-C(4)	0.9200	N(2)-H(1N)	0.91(4)
C(4)-C(5)	0.9200	N(2)-H(2N)	0.93(4)
C(4)-C(9)	1.415(7)	C(1)-C(2)	1.408(3)
C(5)-C(6)	1.358(8)	C(2)-C(3)	1.359(4)
C(6)-C(7)	1.404(8)	C(3)-C(4)	1.412(4)
C(7)-C(8)	1.417(8)	C(4)-C(9)	1.411(3)
C(8)-C(9)	1.418(7)	C(4)-C(5)	1.414(4)
C(10)-C(11)	1.374(9)	C(5)-C(6)	1.362(5)

 Table S2 Selected bond lengths (Å) for complex [Ru]-1 and [Ru]-2

C(10)-C(15)	1.399(8)	C(6)-C(7)	1.412(4)
C(11)-C(12)	1.374(7)	C(7)-C(8)	1.360(3)
C(12)-C(13)	1.411(7)	C(8)-C(9)	1.404(3)
C(13)-C(14)	1.393(9)	C(10)-C(11)	1.498(4)
C(14)-C(15)	1.406(9)	C(11)-C(16)	1.408(4)
	1.409(8)	C(11)-C(12)	1.419(4)
	1.407(8)	C(12)-C(13)	1.405(4)
	1.415(8)	C(13)-C(14)	1.426(4)
	1.403(8)	C(14)-C(15)	1.402(4)
		C(14)-C(17)	1.512(3)
		C(15)-C(16)	1.421(3)
		C(17)-C(19)	1.509(5)
		C(17)-C(18)	1.511(4)

[Ru]-1		[Ru]-2	
N(1)-Ru(1)-N(2)	78.66(16)	N(1)-Ru(1)-N(2)	78.71(7)
N(1)-Ru(1)-C(12)	132.07(18)	N(1)-Ru(1)-C(15)	146.96(8)
N(2)-Ru(1)-C(12)	90.49(18)	N(2)-Ru(1)-C(15)	91.87(8)
N(1)-Ru(1)-C(14)	93.31(18)	N(1)-Ru(1)-C(13)	131.34(9)
N(2)-Ru(1)-C(14)	142.72(19)	N(2)-Ru(1)-C(13)	148.45(9)
C(12)-Ru(1)-C(14)	68.0(2)	C(15)-Ru(1)-C(13)	67.69(9)
N(1)-Ru(1)-C(11)	169.56(19)	N(1)-Ru(1)-C(16)	111.66(8)
N(2)-Ru(1)-C(11)	101.73(19)	N(2)-Ru(1)-C(16)	98.99(9)
C(12)-Ru(1)-C(11)	37.8(2)	C(15)-Ru(1)-C(16)	38.09(9)
C(14)-Ru(1)-C(11)	80.0(2)	C(13)-Ru(1)-C(16)	79.91(9)
N(1)-Ru(1)-C(10)	146.3(2)	N(1)-Ru(1)-C(12)	101.29(8)
N(2)-Ru(1)-C(10)	133.4(2)	N(2)-Ru(1)-C(12)	165.47(9)
C(12)-Ru(1)-C(10)	67.6(2)	C(15)-Ru(1)-C(12)	80.23(9)
C(14)-Ru(1)-C(10)	67.3(2)	C(13)-Ru(1)-C(12)	37.58(10)
C(11)-Ru(1)-C(10)	37.2(2)	C(16)-Ru(1)-C(12)	67.31(9)
N(1)-Ru(1)-C(13)	101.89(18)	N(1)-Ru(1)-C(14)	169.35(8)
N(2)-Ru(1)-C(13)	107.85(19)	N(2)-Ru(1)-C(14)	111.92(8)
C(12)-Ru(1)-C(13)	37.6(2)	C(15)-Ru(1)-C(14)	37.49(9)
C(14)-Ru(1)-C(13)	37.8(2)	C(13)-Ru(1)-C(14)	38.12(9)
C(11)-Ru(1)-C(13)	67.9(2)	C(16)-Ru(1)-C(14)	68.36(9)
C(10)-Ru(1)-C(13)	79.9(2)	C(12)-Ru(1)-C(14)	68.61(9)

 Table S3 Selected bond angles (°) for complex [Ru]-1 and [Ru]-2

N(1)-Ru(1)-C(15)	111.7(2)	N(1)-Ru(1)-C(11)	92.81(8)
N(2)-Ru(1)-C(15)	169.24(19)	N(2)-Ru(1)-C(11)	128.11(9)
C(12)-Ru(1)-C(15)	80.3(2)	C(15)-Ru(1)-C(11)	68.15(9)
C(14)-Ru(1)-C(15)	37.4(2)	C(13)-Ru(1)-C(11)	67.82(9)
C(11)-Ru(1)-C(15)	67.6(2)	C(16)-Ru(1)-C(11)	37.23(9)
C(10)-Ru(1)-C(15)	37.4(2)	C(12)-Ru(1)-C(11)	37.49(9)
C(13)-Ru(1)-C(15)	67.9(2)	C(14)-Ru(1)-C(11)	81.13(9)
N(1)-Ru(1)-Cl(1)	84.43(11)	N(1)-Ru(1)-Cl(1)	85.66(5)
N(2)-Ru(1)-Cl(1)	84.98(12)	N(2)-Ru(1)-Cl(1)	84.18(6)
C(12)-Ru(1)-Cl(1)	141.50(15)	C(15)-Ru(1)-Cl(1)	125.21(7)
C(14)-Ru(1)-Cl(1)	130.87(15)	C(13)-Ru(1)-Cl(1)	88.49(7)
C(11)-Ru(1)-Cl(1)	106.01(16)	C(16)-Ru(1)-Cl(1)	162.68(7)
C(10)-Ru(1)-Cl(1)	88.22(14)	C(12)-Ru(1)-Cl(1)	110.35(7)
C(13)-Ru(1)-Cl(1)	166.50(15)	C(14)-Ru(1)-Cl(1)	94.59(7)
C(15)-Ru(1)-Cl(1)	98.73(15)	C(11)-Ru(1)-Cl(1)	146.78(7)
C(1)-N(1)-C(9)	118.2(4)	C(1)-N(1)-C(9)	117.90(19)
C(1)-N(1)-Ru(1)	126.4(3)	C(1)-N(1)-Ru(1)	126.28(16)
C(9)-N(1)-Ru(1)	115.2(3)	C(9)-N(1)-Ru(1)	115.76(14)
C(8)-N(2)-Ru(1)	112.2(3)	C(8)-N(2)-Ru(1)	111.72(13)
C(8)-N(2)-H(2A)	109.2	C(8)-N(2)-H(1N)	111(2)
Ru(1)-N(2)-H(2A)	109.2	Ru(1)-N(2)-H(1N)	109(2)
C(8)-N(2)-H(2B)	109.2	C(8)-N(2)-H(2N)	102(2)
Ru(1)-N(2)-H(2B)	109.2	Ru(1)-N(2)-H(2N)	112(2)

H(2A)-N(2)-H(2B)	107.9	H(1N)-N(2)-H(2N)	111(3)
N(1)-C(1)-C(2)	122.4(5)	N(1)-C(1)-C(2)	122.9(2)
C(3)-C(2)-C(1)	120.1(5)	C(3)-C(2)-C(1)	119.6(2)
C(2)-C(3)-C(4)	119.4(5)	C(2)-C(3)-C(4)	119.6(2)
C(3)-C(4)-C(5)	124.3(5)	C(9)-C(4)-C(3)	117.4(2)
C(3)-C(4)-C(9)	117.7(5)	C(9)-C(4)-C(5)	118.4(2)
C(5)-C(4)-C(9)	118.0(5)	C(3)-C(4)-C(5)	124.2(2)
C(6)-C(5)-C(4)	120.5(5)	C(6)-C(5)-C(4)	119.8(2)
C(5)-C(6)-C(7)	121.0(5)	C(5)-C(6)-C(7)	121.4(3)
C(8)-C(7)-C(6)	120.3(5)	C(8)-C(7)-C(6)	119.7(3)
C(7)-C(8)-C(9)	119.8(5)	C(7)-C(8)-C(9)	120.1(2)
C(7)-C(8)-N(2)	124.2(5)	C(7)-C(8)-N(2)	123.4(2)
C(9)-C(8)-N(2)	116.1(4)	C(9)-C(8)-N(2)	116.54(19)
N(1)-C(9)-C(8)	117.3(4)	N(1)-C(9)-C(8)	117.07(19)
N(1)-C(9)-C(4)	122.2(4)	N(1)-C(9)-C(4)	122.5(2)
C(8)-C(9)-C(4)	120.5(4)	C(8)-C(9)-C(4)	120.4(2)
C(11)-C(10)-C(15)	121.2(5)	C(16)-C(11)-C(12)	118.4(2)
C(11)-C(10)-Ru(1)	71.3(3)	C(16)-C(11)-C(10)	120.9(2)
C(15)-C(10)-Ru(1)	71.9(3)	C(12)-C(11)-C(10)	120.7(2)
C(10)-C(11)-C(12)	119.5(5)	C(16)-C(11)-Ru(1)	70.09(13)
C(10)-C(11)-Ru(1)	71.5(3)	C(12)-C(11)-Ru(1)	70.12(13)
C(12)-C(11)-Ru(1)	70.3(3)	C(10)-C(11)-Ru(1)	130.76(18)
C(13)-C(12)-C(11)	120.7(5)	C(13)-C(12)-C(11)	120.3(2)

C(13)-C(12)-Ru(1)	72.4(3)	C(13)-C(12)-Ru(1)	70.22(13)
C(11)-C(12)-Ru(1)	71.9(3)	C(11)-C(12)-Ru(1)	72.39(13)
C(12)-C(13)-C(14)	118.6(5)	C(12)-C(13)-C(14)	121.9(2)
C(12)-C(13)-Ru(1)	70.0(3)	C(12)-C(13)-Ru(1)	72.19(13)
C(14)-C(13)-Ru(1)	70.4(3)	C(14)-C(13)-Ru(1)	72.09(13)
C(15)-C(14)-C(13)	121.2(5)	C(15)-C(14)-C(13)	117.1(2)
C(15)-C(14)-Ru(1)	72.3(3)	C(15)-C(14)-C(17)	123.8(2)
C(13)-C(14)-Ru(1)	71.9(3)	C(13)-C(14)-C(17)	119.1(2)
C(14)-C(15)-C(10)	118.8(5)	C(15)-C(14)-Ru(1)	69.97(13)
C(14)-C(15)-Ru(1)	70.3(3)	C(13)-C(14)-Ru(1)	69.79(13)
C(10)-C(15)-Ru(1)	70.7(3)	C(17)-C(14)-Ru(1)	129.82(17)
		C(14)-C(15)-C(16)	121.6(2)
		C(14)-C(15)-Ru(1)	72.54(13)
		C(16)-C(15)-Ru(1)	71.90(13)
		C(11)-C(16)-C(15)	120.7(2)
		C(11)-C(16)-Ru(1)	72.68(14)
		C(15)-C(16)-Ru(1)	70.01(13)
		C(19)-C(17)-C(18)	111.6(3)
		C(19)-C(17)-C(14)	114.1(3)
		C(18)-C(17)-C(14)	109.2(2)

Table S4 Catalytic transformation of furfural to LA in aqueous medium with different arene-ruthenium(II) complexes based catalysts. Reaction Conditions: furfural (1.0 mmol), catalyst (1 mol%), formic acid (12 equiv.) and water (10 mL), T = 80 °C.

Table S5 Influence of additives on the catalytic transformation of furfural to LA in the presence of **[Ru]-2**. Reaction Conditions: furfural (1.0 mmol), **[Ru]-2** (1 mol%), and water (10 mL).

Entry	Additive	$T(^{\circ}C) / t(h)$	Conv. (%)	
1	formic acid ^{<i>a</i>}	100/7	>99	
2	formic acid ^a	80/16	>99	
3	formic acid ^a	60/16	23	
4	$H_2 gas^b$	80/16	n.r.	
5	acetic acid ^a	80/16	~2	
6	propionic acid ^a	80/16	n.r.	
7	<i>iso</i> -butyric acid ^{<i>a</i>}	80/16	n.r.	
^{<i>a</i>} 12 equivalents. ^{<i>b</i>} from balloon.				

Figure S1 Influence of temperature on the decomposition of formic acid (1 mmol) to CO_2 and H_2 with **[Ru]-2** catalyst (0.01 mmol).

Figure S2 Possible reaction mechanism for the transformation of furfural to LA.

The thermal stability studies were performed in NMR tubes by dissolving ca. 4 mg of each catalyst in 0.5 mL of D_2O and heating the solution at 80 or 100 °C. The decomposition of the catalyst was monitored by ¹H NMR spectra taken at certain intervals of time (0, 24, 48 and 72 h).

Figure S3 ¹H NMR spectra for the thermal stability of **[Ru]-1** catalyst at 80 °C in D₂O.

Figure S4 ¹H NMR spectra for the thermal stability of **[Ru]-2** catalyst at 80 °C in D₂O. S-14

Figure S5 ¹H NMR spectra for the thermal stability of [Ru]-2 catalyst at 80 °C and 100 °C in D_2O .

Figure S6 Thermal gravimetric analysis (TGA) graph of a) [Ru]-1 and b) [Ru]-2.

Figure S7 Stability of **[Ru]-2** catalyst towards recyclability for the catalytic transformation of furfural to LA at 80 and 100 °C.

Spectral data of products obtained by catalytic transformation of bio-derived furans

Levulinic acid (LA): ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 2.73 (t, 2H, J = 8 Hz), 2.59 (t, 2H, J = 8 Hz), 2.17 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) = 206.65, 177.53, 37.69, 29.78, 27.64. HRMS (ESI) m/z: calculated 139.04 [C₅H₈O₃ + Na⁺], found 139.036 [C₅H₈O₃ + Na⁺].

3-Hydroxyhexane-2,5-dione (3-HHD): ¹H NMR (400 MHz, CDCl₃): δ (ppm) 4.33-4.30 (m, 1H), 3.75 (br, 1H) 2.95 (dd, 1H, $J_1 = 16$ Hz, $J_2 = 4$ Hz), 2.82 (dd, 1H, J = 16 Hz, $J_2 = 4$ Hz), 2.22 (s, 3H), 2.18 (s, 3H), ¹³C NMR (100 MHz, CDCl₃): δ (ppm) = 209.15, 207.09, 73.76, 46.11, 30.81, 25.38. HRMS (ESI) m/z: calculated 153.05 [C₅H₁₀O₃ + Na⁺], found 153.05 [C₅H₁₀O₃ + Na⁺].

1-Hydroxyhexane-2,5-dione (1-HHD): ¹H NMR (400MHz, CDCl₃): δ (ppm) = 4.31 (s, 2H), 2.82 (t, 2H, *J* = 8 Hz), 2.61 (t, 2H, *J* = 8 Hz), 2.17 (s, 3H).

Hexane-2,5-dione (HD): ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 2.69 (s, 4H), 2.18 (s, 6H).

NMR Spectra of arene-ruthenium(II) complexes

Figure S8 ¹H NMR spectrum of complex [Ru]-1.

Figure S9 ¹³C NMR spectrum of complex [Ru]-1.

Figure S10 ¹H NMR spectrum of complex [Ru]-2.

Figure S11 ¹³C NMR spectrum of complex [Ru]-2.

Figure S12 ³¹P NMR spectrum of complex [Ru]-3.

Mass Spectra of arene ruthenium complexes

Figure S13 Mass spectrum of complex [Ru]-1

Figure S14 Mass spectrum of complex [Ru]-2

S-23

Figure S15 Mass spectrum of complex [Ru]-3

NMR Spectra of products obtained by catalytic transformation of bio-derived furans

Figure S16 ¹H NMR spectrum of Levulinic acid.

Figure S17 ¹³C NMR spectrum of Levulinic acid.

Figure S18 HRMS data of levulinic acid obtained from furfural.

Figure S19 ¹H NMR spectrum of the products obtained from the catalytic transformation of furfural with 2 equivalents of formic acid.

Figure S20 ¹H NMR spectrum of the products obtained from the catalytic transformation of 5-methylfurfuraldehyde.

Figure S21 ¹H NMR spectrum of 3-hydroxyhexane-2,5-dione (after purification) obtained from 5-methyl furfural.

Figure S22 ¹³C NMR spectrum of 3-hydroxyhexane-2,5-dione (after purification) obtained from 5-methyl furfural.

S-30

Figure S23 HRMS data of 3-hydroxyhexane-2,5-dione obtained from 5-methyl furfural.

Figure S24 ¹H NMR spectrum of the products obtained from the catalytic transformation of 5-hydroxymethyl-2-furfual (5-HMF).