Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2015

Electronic supplementary information (ESI†):

Foamed lignin-silicone bio-composites by extrusion then compression molding

Jianfeng Zhang, a Etienne Fleury, and Michael A. Brook **

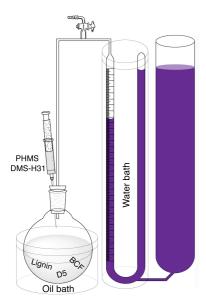


Figure S1. A gas volume meter was used to measure volume of gas produced during the reaction in solvent during preliminary optimizations and hydrolysis studies.

^a Chemistry and Chemical Biology, McMaster University, 1280 Main St. W., Hamilton, Ontario, Canada L8S 4M1. Fax: +1-(905) 522-2509; Tel: +1-(905) 525-9140 ext. 23483; Email: mabrook@mcmaster.ca

^b Université de Lyon, CNRS, UMR 5223, INSA-Lyon, IMP@INSA, F-69621, Villeurbanne, France. Fax: +33-472-438-527; E-mail: etienne.fleury@insa-lyon.fr

Table S1. Preliminarily optimizations for extrusion and molding conditions of different formulations.

No.	Lignin		PHMS		H-PDMS-H		D_5	BCF	Reaction	
	Mass (g)	wt% a	Mass (g)	wt% ^b	Type	Mass (g)			temperature (°C)	
O-1	0.25	50	0.02	8	H31	0.23	5	1000	30	
O-2	0.25	50	0.02	8	H31	0.23	5	1000	40	
O-3	0.25	50	0.02	8	H31	0.23	5	1000	50	
O-4	0.25	50	0.02	8	H31	0.23	5	1000	90	
O-5	0.25	51	0.01	4	H31	0.23	5	1000	50	
O-6	0.25	48	0.04	16	H31	0.23	5	1000	50	
O-7	0.25	50	0.02	8	H31	0.23	5	2000	30	
O-8	0.25	50	0.02	8	H31	0.23	5	4000	30	

^a Weight ratios of lignin and catalyst loading are calculated without considering the solvent (D₅). ^b Weight ratios of PHMS are calculated against lignin weight only.

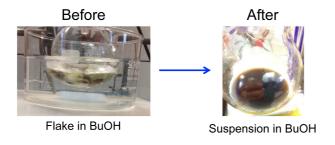


Figure S1. Testing the conversion of "Si-H" in lignin-silicone foam. Before reaction, the sliced lignin-silicone foam layers were dispersed in KOH/BuOH; the foam lost its integrity (fell apart to give a suspension) after treatment.

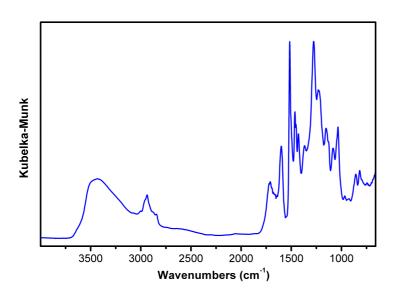


Figure S3. FT-IR for softwood kraft lignin obtained from Weyerhaeuser.

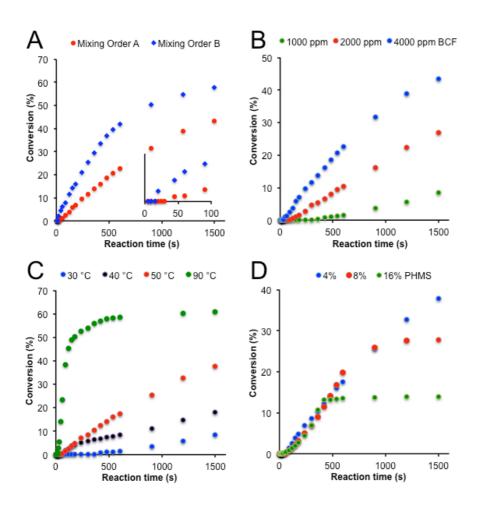


Figure S4. Kinetics studies for PHMS conversion % under different conditions and formulations: (A) mixing order: mixing order A led to longer induction times. The inset graph is the expanded range showing different induction times; (B) catalyst

loading: conversion% increased, while induction time decreased, with increased catalyst loading; (C) temperature: higher temperature led to faster reaction rates and greater conversion% of PHMS. (D) PHMS content had no impact on induction time.

Figure S5. Gelation or crosslinking of foam precursors blocked the extruder channels.

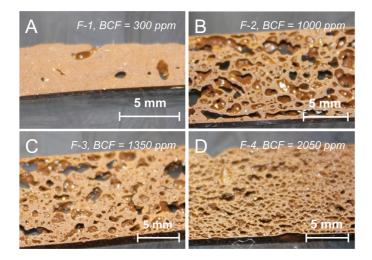


Figure S6. Cross-sectional images of lignin-silicone foams prepared from formulations with different catalyst loading: (A) F-1, BCF = 300 ppm, (B) F-2, BCF = 1000 ppm, (C) F-3, BCF = 1350 ppm, and (D) F-4, BCF = 2050 ppm.

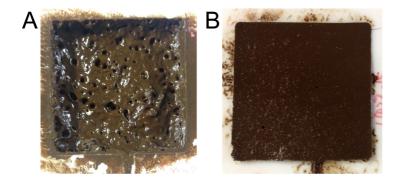


Figure S7. Images of lignin-silicone composite foams made with different catalyst content. (A) BCF = 300 ppm, curing for 180 min; (B) BCF = 1000 ppm, curing time = 5 min.

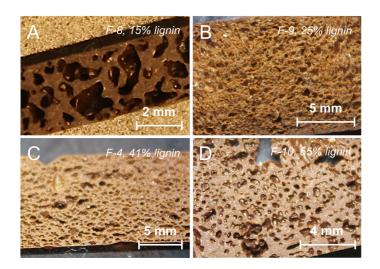


Figure S8. Cross-sectional images of lignin-silicone foam sprepared from formulations with varying lignin content: (A) F-8, 15 % of lignin, (B) F-9, 25% lignin, (C) F-4, 41% lignin, and (D) F-10, 55% lignin.

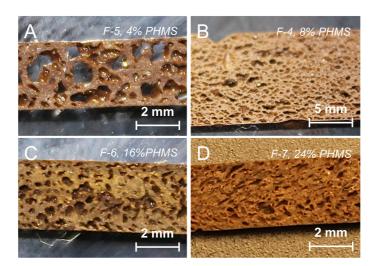


Figure S9. Cross-sectional images of lignin-silicone foams prepared from formulations with varying PHMS content: (A) F-5, 4 % of PHMS, (B) F-4, 8 % of PHMS, (C) F-6, 16 % of PHMS, and (D) F-7, 24 % of PHMS.

Figure S10. Cross-sectional images of lignin-silicone foams prepared from formulations with different molecular weight H-PDMS-H: (A) F-11, DMS-H25 (Mw = 6000 g/mol), (B) F-4, DMS-H31 (Mw = 28000 g/mol), and (C) F-13, Mixture of DMS-H25/31/41 (containing 26% H25, 48% H31, and 26% H41, H-41: Mw = 62700 g/mol).

Figure S11. Attempts to make lignin-silicone foams using DMS-H41 (F-12) failed due to the high intrinsic viscosity of DMS-H41. The precursor is semi-cured, and could not be processed in extruder.

Figure S12. Cross-sectional images of lignin-silicone foams (formulation F-4) molded under different temperatures: (A) 60, (B) 90, and (C) 120°C.

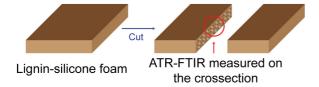


Figure S13. Preparation samples for ATR-IR characterization: how signal changes of "Si-H" groups in the foam were tracked.

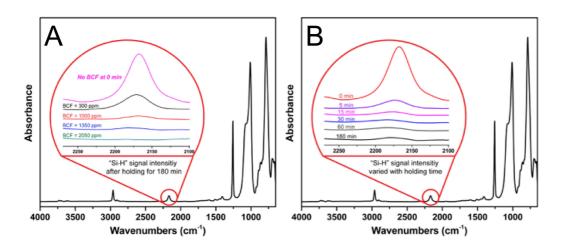


Figure S14. ATR-FTIR spectra for lignin-silicone foams made under different conditions and formulations: (A) different catalyst loading (from 300 to 2050 ppm), cured at 90 °C for 180 min, (B) foams in mold with different holding times (from 5 to 180 min), cured with 1350 ppm catalyst at 90 °C. The expanded spectra ranged from 2100 to 2250 cm⁻¹ to track the intensity change of the "Si-H" signal.

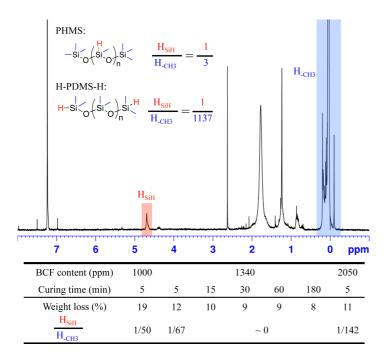


Figure S15. NMR spectrum of the cyclohexane extract from lignin-silicone foam, and the proton ratios ("Si-H"/"Si-CH₃") of samples obtained with different conditions and formulations

Table S1. The degree of conversion of "Si-H" in lignin-silicone foams, tested by hydrolysis in solution

Formulation	Lignin content (%)	PHMS content (%)	H-PDMS-H	Conversion of Si-H (%) ^a
F-4 B	4	8	DMS-H31	43
F-4 B, 140 °C for 12 h	4	8	DMS-H31	44
F-4 B, 220 °C for 5 h	4	8	DMS-H31	69
F-4 B, 220 °C for 12 h	4	8	DMS-H31	77
F-4 B, 300 °C for 12 h	4	8	DMS-H31	79

^a The residual "Si-H" = 100% - Conversation of Si-H (%)

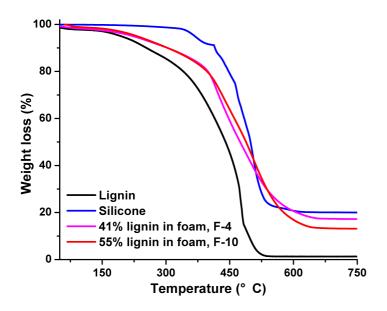


Figure S16. TGA of lignin-silicone foams (purple: 41% lignin in foam, red: 55% lignin in foam), lignin (black), and silicone (blue) under an air atmosphere.

Table S2. The mechanical properties of lignin-silicone foams characterized using DMA

				Formulation								
		F-4 B	F-5	F-6	F-7	F-8	F-9	F-10	F-11	F-13		
T_{g}	-116	-110	-110	-111	-115	-109	-116	-111	-113			
$T_{m}(^{\circ}C)$		-37	-37	-37	-37	-38	-42	-36	-37	-31		
Storage	@ T _g - 20 °C	99	51	82	82	95	48	51	71	91		
Modulus	@ $T_g + 20 ^{\circ}C$	87	43	58	85	86	46	46	59	81		
(E', MPa)	@ $T_g + 50 ^{\circ}C$	0.54	3.5	15	17	0.86	0.29	3	1.3	1.7		
Loss	@ T _g	7.6	2.1	3.5	7.4	4.7	11	2.5	4	3.5		
Modulus (E", MPa)	@ T _g + 50 °C	0.13	0.58	2.4	2.2	0.16	0.02	0.63	0.2	0.29		
Tan Delta	@ T _g	0.09	0.05	0.05	0.09	0.06	0.55	0.05	0.07	0.04		
ran Detta		0.18	0.19	0.13	0.11	0.21	0.14	0.22	0.16	0.2		