Electronic Supplementary Information

Plasma membrane permeabilisation by ionic liquids: a matter of charge

Diego O. Hartmann,^a Karina Shimizu,^{b†} Filipa Siopa,^{c†} M. Cristina Leitão,^a

Carlos A. M. Afonso,^c José N. Canongia Lopes^{a,b} and Cristina Silva Pereira^{*a}

^a Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República,
2780-157, Oeiras, Portugal
^b Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Avenida
Rovisco Pais 1, 1049-001 Lisboa, Portugal
^c iMed.ULisboa, Faculdade de Farmácia da Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal

[†]Equally contributing authors

*Corresponding author: spereira@itqb.unl.pt

Experimental

General remarks

All chemicals, reagents and solvents for the synthesis of the compounds were of analytical grade, purchased from commercial sources, namely Sigma-Aldrich[®], Merck and Alfa Aesar and these were used without further purification. The synthesis of the alkyl-(2-hydroxyethyl)-dimethylammonium bromides ($[N_{1\,1\,n\,2OH}]$, n = 2, 4, 6, 8 and 12) has been previously described by us.¹ ¹H and ¹³C NMR spectra were measured on an Ultrashield Bruker Avance II 300 spectrometer and Ultrashield Bruker Avance II 400 spectrometer. Splitting patterns are indicated as *s*, singlet; *d*, doublet; *t*, triplet; *q*, quartet; *m*, multiplet; *br*, broad peak. The low resolution electrospray ionization mass spectra were recorded using a Micromass[®] Quattro Micro triple quadruple (Waters[®], Ireland) with an electrospray (ESI) ion source. Elemental analysis was performed in a Flash 2000 CHNS-O analyzer (Thermo Scientific, UK). Melting points were determined on a Stuart SMP10 apparatus.

General method for the synthesis of alkyl-(2-hydroxyethyl)-dimethylammonium bromides

In a Aldrich ace pressure tube (Z181064) at room temperature, a solution of the correspondent brominated derivative (45 mmol) dissolved in MeCN (5 mL) was added to a solution of 2-(dimethylamino)ethanol (4.1 g, 45 mmol) in MeCN (5 mL) and heated overnight at 60 °C, unless stated. For the compounds $[N_{1\,1\,2\,2OH}]Br$, $[N_{1\,1\,4\,2OH}]Br$, the salt precipitated during the reaction, while for the compound $[N_{1\,1\,12\,2OH}]Br$, the salt precipitated when the Aldrich ace pressure tube was cooling to room temperature. Diethyl ether was added and the salt was filtered and dried under vacuum. For the compounds $[N_{1\,1\,6\,2OH}]Br$, $[N_{1\,1\,8\,2OH}]Br$, and $[N_{1\,1\,10\,2OH}]Br$, in which the reaction mixture was liquid, the solvent was evaporated and diethyl ether was added to precipitate the product. The ionic liquid was then filtered and dried under vacuum.

Ethyl-(2-hydroxyethyl)-dimethylammonium bromide ($[N_{1\ 1\ 2\ 2OH}]$ Br). The reaction mixture was heated for 20 min. The product was collected as a white solid in 96 % yield, m.p. 280-282°C (Lit. 282 - 284°C)². ¹H NMR (300 MHz, D₂O) δ 4.02-3.97 (m, 2H), 3.47 – 3.39 (m, 4H), 3.08 (s, 6H), 1.35 – 1.28 (m, 3H). ¹³C NMR (75 MHz, D₂O) δ 64.41, 61.04, 55.39, 50.91, 50.86, 7.73. Anal. Calcd for C₆H₁₆BrNO: C, 36.38; H, 8.14; N, 7.07. Found: C, 36.13; H, 8.24; N, 7.24. Spectral data ¹H and ¹³C NMR identical to reported one.³

Butyl-(2-hydroxyethyl)-dimethylammonium bromide ($[N_{11420H}]Br$). The salt was recovered as a white solid in 96 %, m.p. 110-113 °C. ¹H NMR (300 MHz, D₂O) δ 3.97 (s, 2H), 3.44 – 3.40 (m, 2H), 3.34 - 3.29 (m, 2H), 3.07 (s, 6H), 1.75 – 1.64 (m, 2H), 1.38 – 1.25 (m, 2H), 0.88 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (75 MHz, D₂O) δ 65.30, 64.83, 55.39, 51.46, 51.41, 23.98, 19.10, 12.91. Anal. Calcd for C₈H₂₀BrNO: C, 42.49; H, 8.91; N, 6.19. Found: C,42.64; H, 9.22; N, 6.43. Spectral data ¹H and ¹³C NMR identical to reported one.³

Hexyl-(2-hydroxyethyl)-dimethylammonium bromide ($[N_{1162OH}]Br$). The reaction mixture was heated during 72 h. The product was obtained as a white gummy in 95 %. ¹H NMR (300 MHz, CDCl₃) δ 3.79 (s, 2H), 3.44 – 3.41 (m, 2H), 3.33 – 3.27 (m, 2H), 3.08 (s, 6H), 1.48 (s, 2H), 1.05 – 1.01 (m, 6H), 0.59 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 65.25, 65.86, 55.17, 51.49, 30.60, 25.27, 22.17, 21.79, 13.37. Spectral data ¹H and ¹³C NMR identical to reported one.³

Octyl-(2-hydroxyethyl)-dimethylammonium bromide ($[N_{1182OH}]Br$). A white salt was obtained in 93 %, m.p. 107-110 °C (Lit. 116 – 118 °C)⁴. ¹H NMR (300 MHz, CDCl3) δ 4.07 (s, 2H), 3.71 - 3.70 (m, 2H), 3.54 – 3.49 (m, 2H), 3.33 (s, 6H), 1.71 (s, 2H), 1.31 - 1.22 (m, 10H), 0.83

(t, J = 6.0 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 66.00, 65.56, 55.82, 52.07, 31.61, 29.12, 29.02, 26.24, 22.85, 22.54, 14.05. Spectral data ¹H NMR identical to reported one.⁴

Decyl-(2-hydroxyethyl)-dimethylammonium bromide ($[N_{1 \ 1 \ 10 \ 20H}]Br$). The product was obtained as a white solid in 95 %, m.p. 167-168 °C. ¹H NMR (400 MHz, D₂O) δ 3.95 (s, 2H), 3.43 (s, 2H), 3.34 – 3.32 (m, 2H), 3.08 (s, 6H), 1.70 (s, 2H), 1.28 – 1.20 (m, 14H), 0.78 (d, *J* = 6.6 Hz, 3H). ¹³C NMR (101 MHz, D₂O) δ 65.25, 64.95, 55.37, 51.51, 31.69, 29.18, 28.83, 25.95, 22.47, 22.29, 13.77. Anal. Calcd for C₁₄H₃₂BrNO: C, 54.19; H, 10.39; N, 4.51. Found: C, 54.19; H, 10.30; N, 4.53. Spectral data ¹H identical to reported one.⁵

Dodecyl-(2-hydroxyethyl)-dimethylammonium bromide ([N_{1 1 12 20H}]Br). A white solid was recovered in 95 %, m.p. 190-193 °C (Lit 193 - 196 °C)⁶. ¹H NMR (300 MHz, CDCl₃) δ 4.04 (s, 2H), 3.69 – 3.66 (m, 2H), 3.52 – 3.46 (m, 2H), 3.30 (s, 6H), 1.68 (s, 2H), 1.28 – 1.18 (m, 18H), 0.80 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 66.01, 65.55, 55.80, 52.06, 31.85, 29.56, 29.46, 29.40, 29.29, 29.21, 26.26, 22.87, 22.64, 14.09. Spectral data ¹H NMR identical to reported one.⁵

1. A e Silva, F.; Siopa, F.; Figueiredo, B. F. H. T.; Goncalves, A. M.; Pereira, J. L.; Goncalves, F.; Coutinho, J. A.; Afonso, C. A. M.; Ventura, S. P. M., *Ecotoxicol Environ Saf* **2014**, 108, 302-310.

2. Parkkari, J. H.; Bannard, R. A. B.; Coleman, I. W., Can J Chemistry 1965, 43, 3119-3128.

3. Domanska, U.; Bogel-Lukasik, R., J Phys Chem B 2005, 109, 12124-12132.

4. Calas, M.; Ancelin, M. L.; Cordina, G.; Portefaix, P.; Piquet, G.; Vidal-Sailhan, V.; Vial, H., *J Med Chem* 2000, 43, 505-516.

5. Calas, M.; Cordina, G.; Bompart, J.; BenBari, M.; Jei, T.; Ancelin, M. L.; Vial, H., J Med Chem 1997, 40, 3557-3566.

6. Moss, R. A.; Chiang, Y. C. P.; Hui, Y. Z., J Am Chem Soc 1984, 106, 7506-7513.

Table S1. Liquid chromatography conditions for the quantification of ionic liquids organic ions in the culture media. The tested ionic liquids were: 1-alkyl-3-methylimidazolium chlorides ($[C_n mim]Cl$, n = 2, 4, 6 8 or 10), cholinium alkanoates (anion = $[eth]^-$, $[but]^-$, $[hex]^-$, $[oct]^-$ or $[dec]^-$) and alkyl-(2-hydroxyethyl)-dimethylammonium bromides ($[N_{1 1 n 2OH}]Br$, $n = 2, 4, 6)^a$.

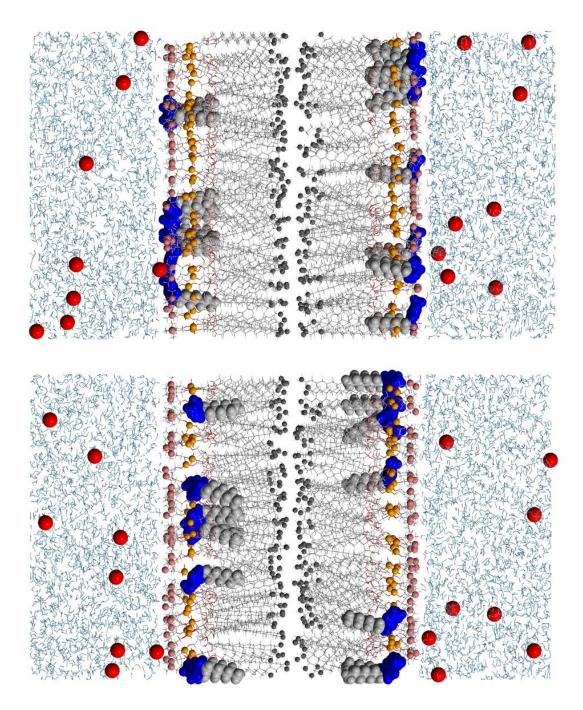
Ion	Detection / nm	Column	Mobile phase ^b	Flow rate / mL min ⁻¹
$[C_2 mim]^+$	218	Synergi Polar-RP	98% A1 + 2% B1	0.8
$[C_4 mim]^+$		column (150×4.6)	94% A1 + 6% B1	1.2
$[C_6 mim]^+$		mm) packed with polar endcapped	80% A1 + 20% B1	1.2
$[C_8 mim]^+$		particles $(4 \ \mu m,$	50% A1 + 50% B1	1.0
$[C_{10}mim]^+$		pore size 80 Å) (Phenomenex), set at 26 °C	40% A1 + 60% B1	1.0
$\begin{array}{c} \left[N_{1\ 1\ 1\ 2OH} \right]^{+} \\ \left[N_{1\ 1\ 2\ 2OH} \right]^{+} \\ \left[N_{1\ 1\ 4\ 2OH} \right]^{+} \\ \left[N_{1\ 1\ 6\ 2OH} \right]^{+} \end{array}$	215	Synergi Polar-RP column (150×4.6 mm) packed with polar endcapped particles (4 µm, pore size 80 Å) (Phenomenex), set at 26 °C	98% A2 + 2% B2 95% A2 + 5% B2 70% A2 + 30% B2 45% A2 + 55% B2	1.0
[eth] ⁻ [but] ⁻ [hex] ⁻ [oct] ⁻ [dec] ⁻	212	150 mm), 1.8 μm	from 10% to 95% of B3 (90% to 5% of A3) in 5.7min,	0.4

^{a)} The $[N_{11820H}]^+$, $[N_{111020H}]^+$ and $[N_{111220H}]^+$ cations could not be quantified since their initial concentrations were below the detection limits of the established method. ^{b)} A1) aqueous solution of 5 mM phosphate buffer, pH 3; B1) acetonitrile; A2) aqueous solution of 0.1% (v/v) heptafluorobutyric acid, pH 6; B2) methanol, A3) aqueous solution of 0.1% (v/v) phosphoric acid; B3) acetonitrile.

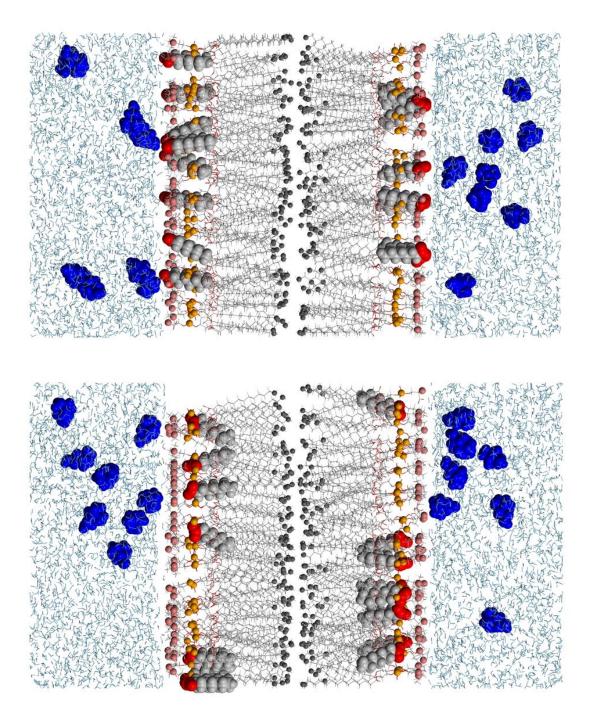
Table S2. List of the designed *q*RT-PCR oligonucleotides (forward and reverse) used in this study. Oligonucleotides were designed based on the sequences of *A. nidulans* genes, obtained from the *Aspergillus* Genome Database (http://www.aspergillusgenome.org/). The selected genes are involved in plasma membrane biosynthesis of *Aspergillus nidulans*. The γ -actin (*actA*) gene was selected as housekeeping (internal control).

Name	Gene (Code)	Sequence (5' to 3')
HMGR1f	HMGR1 (AN3817)	AAGCACTCCATGTCATGGCTA
HMGR1r	HMGR1 (AN3817)	TAATAGCCTCAGCCACAACTGA
AN9407F	fasA (AN9407)	CTTCAAAGCAAGGTCTTCCTGA
AN9407R	fasA (AN9407)	CGCCAGGGACTCAATCACA
AN9408F	<i>fasB</i> (AN9408)	TTGGAAGACGTGAAGGCTCA
AN9408R	fasB (AN9408)	GGTACGTCGATTCCCTTCAGA
barAf	barA (AN4332)	GTGGTGCTCAACCTGATGGA
barAr	barA (AN4332)	TGGGTACATGATATGGCGTGA
lagAf	lagA (AN2464)	TCCCCACAGAGAGCACGAA
lagAr	lagA (AN2464)	GATGATGTGGTGGCCCACA
ACTF	actA (AN6542)	CTGGGACGACATGGAGAAGAT
ACTR	actA (AN6542)	GTAGATGGGGACGACGTGAG

Table S3. Minimal inhibitory and fungicidal concentrations (MIC and MFC, respectively) of 1-alkyl-3-methylimidazolium chlorides ($[C_n mim]Cl$, n = 2, 4, 6, 8 or 10), cholinium alkanoates (anion = $[eth]^-$, $[but]^-$, $[hex]^-$, $[oct]^-$ or $[dec]^-$) and alkyl-(2-hydroxyethyl)-dimethylammonium bromides ($[N_{11n 2OH}]Br$, n = 2, 4, 6, 8, 10 or 12) defined for *Aspergillus nidulans*.


Ionic liquid	MIC / mM	MFC / mM				
1-alkyl-3-methylimidazolium chlorides						
[C ₂ mim]Cl	1390	>4000*				
[C ₄ mim]Cl	445	450				
[C ₆ mim]Cl	7	7				
[C ₈ mim]Cl	0.9	0.9				
[C ₁₀ mim]Cl	0.2	0.2				
cholinium alkanoa	tes					
$[N_{1 \ 1 \ 1 \ 2OH}]$ [eth]	1450	>4000*				
$[N_{1112OH}][but]$	345	1000				
$[N_{1 \ 1 \ 1 \ 2OH}][hex]$	56	59				
$[N_{1 \ 1 \ 1 \ 2OH}][oct]$	19.8	22.8				
$[N_{1 1 1 2OH}][dec]$	4.3	5				
alkyl-(2-hydroxyethyl)-dimethylammonium bromides						
[N _{1 1 2 20H}]Br	$>2000^{*}$	$>2000^{*}$				
[N _{1 1 4 20H}]Br	890	$>2000^{*}$				
$[N_{1162OH}]Br$	105	105				
[N _{1 1 8 20H}]Br	16.5	16.5				
[N _{1 1 10 2OH}]Br	2	2				
[N _{1 1 12 2OH}]Br	0.2	0.2				

*MIC or MFC could not be determined and is estimated to be above the maximum concentrations tested


Table S4. Percentage of membrane-damaged conidia after one hour of incubation with distinct concentrations of 1-alkyl-3-methylimidazolium chlorides ($[C_n mim]Cl$, n = 2, 4, 6 8 or 10), cholinium alkanoates (anion = $[eth]^-$, $[but]^-$, $[hex]^-$, $[oct]^-$ or $[dec]^-$) or alkyl-(2-hydroxyethyl)-dimethylammonium bromides ($[N_{1\,1\,n\,2OH}]Br$, n = 2, 4, 6, 8, 10 or 12). Values were obtained as: (number of propidium iodide-stained conidia / total number of conidia) × 100. Percentage in the saline solution control was 5.87%. Emboldened values were obtained with concentrations above the minimal fungicidal concentration.

Ionic liquid	Concentration / mM						
	0.01	0.1	1	10	100	1000	2000
1-alkyl-3-methyli	midazolium	chlorides					
[C ₂ mim]Cl	n.d.	n.d.	n.d.	n.d.	n.d.	7.8 ± 3.6	8.0 ± 3.7
[C ₄ mim]Cl	n.d.	5.6 ± 0.5	6.3 ± 1.8	6.3 ± 1.1	32.3 ± 2.0	$\textbf{32.4} \pm \textbf{2.1}$	n.d.
[C ₆ mim]Cl	7.1 ± 0.7	9.2 ± 1.5	11.4 ± 0.6	$\textbf{25.0} \pm \textbf{3.7}$	$\textbf{34.6} \pm \textbf{1.0}$	n.d.	n.d.
[C ₈ mim]Cl	8.2 ± 2.2	10.5 ± 2.0	16.8 ± 3.6	46.7 ± 3.6	92.6 ± 3.8	n.d.	n.d.
[C ₁₀ mim]Cl	$9.8 \pm \ 1.8$	13.6 ± 1.5	50.0 ± 6.3	91.4 ± 4.6	94.7 ± 4,1	n.d.	n.d.
cholinium alkano	pates						
$[N_{1 1 1 2OH}]$ [eth]	n.d.	n.d.	n.d.	n.d.	n.d.	12.4 ± 6.2	27.9 ± 1.9
[N _{1 1 1 2OH}][but]	n.d.	5.6 ± 0.2	6.9 ± 1.0	8.1 ± 1.4	9.2 ± 0.9	31.2 ± 4.1	n.d.
[N _{1 1 1 2OH}][hex]	5.8 ± 0.9	5.7 ± 0.8	$6.1\pm\ 0.3$	6.6 ± 1.3	8.2 ± 1.6	n.d.	n.d.
[N _{1112OH}][oct]	5.2 ± 0.9	5.9 ± 1.1	5.7 ± 1.3	6.5 ± 1.1	9.7 ± 1.9	n.d.	n.d.
[N _{1112OH}][dec]	5.3 ± 1.0	7.1 ± 1.0	6.9 ± 2.7	14.2 ± 1.3	$\textbf{25.9} \pm \textbf{2.7}$	n.d.	n.d.
alkyl-(2-hydroxye	ethyl)-dimeth	ylammoniun	ı bromides				
[N _{1 1 2 2OH}]Br	n.d.	n.d.	n.d.	n.d.	n.d.	12.8 ± 1.0	n.d.
[N _{1 1 4 2OH}]Br	n.d.	5.9 ± 1.0	5.9 ± 0.7	7.5 ± 0.5	11.3 ± 1.4	11.6 ± 2.0	n.d.
[N _{1 1 6 2OH}] Br	6.0 ± 2.0	5.9 ± 0.3	4.6 ± 0.5	11.0 ± 0.8	25.8 ± 0.5	n.d.	n.d.
[N _{1 1 8 2OH}] Br	5.0 ± 0.8	7.6 ± 1.7	7.8 ± 0.8	20.7 ± 2.4	91.3 ± 2.6	n.d.	n.d.
[N _{1 1 10 2OH}] Br	5.8 ± 1.7	6.5 ± 2.0	33.2 ± 0.6	$\textbf{82.0} \pm \textbf{3.0}$	93.8 ± 1.7	n.d.	n.d.
[N _{1 1 12 20H}] Br	8.8 ± 1.5	25.8 ± 0.5	86.8 ± 5.1	94.8 ± 2.1	95.2 ± 0.7	n.d.	n.d.
n d – not determined	4						

n.d. = not determined.

Figure S4. Initial configuration snapshots of a section of a mixed phospholipids bilayer in water with 16 ion pairs (1-octyl-3-methylimidazolium chloride, $[C_8mim]Cl$) initially incorporated in the bilayer: (top) charged cation headgroups close to the ammonium groups in the phospholipids; (bottom) charged cation headgroups close to the phosphate groups in the phospholipids.

Figure S5. Initial configuration snapshots of a section of a mixed phospholipids bilayer in water with 16 ion pairs (cholinium octanoate, $[N_{1\,1\,1\,2OH}][oct]$) initially incorporated in the bilayer: (top) charged anion headgroups close to the ammonium groups in the phospholipids; (bottom) charged anion headgroups close to the phosphate groups in the phospholipids.