Electronic Supplementary Information

Oxidative conversion of lignin and lignin model compounds catalyzed by CeO₂-supported Pd nanoparticles

Weiping Deng,^a Hongxi Zhang,^b Xuejiao Wu,^a Rongsheng Li,^a Qinghong Zhang^{*a} and Ye Wang^{*a}

1. XPS spectra for Pd species loaded on several metal oxides

Fig. S1. XPS spectra of Pd 3d for several metal oxide-supported Pd catalysts.

2. H₂ chemisorption results for supported Pd catalysts

Catalyst	Dispersion ^a (%)	Mean diameter of Pd nanoparticles ^b (nm)
Pd/SiO ₂	52	2.1
Pd/Al_2O_3	46	2.4
Pd/CeO ₂	52	2.1
Pd/MgO	27	4.2

Table S1 The dispersion and the estimated mean particle diameters for Pd loaded on several metal oxides

^aObtained from H_2 chemisorption measurements.

^bEstimated by using the following equation: Pd diameter =1.12/Pd dispersion (nm).¹

3. HPLC spectra of soluble products from the conversion of Organosolv lignin over the Pd/CeO₂ catalysts

Fig. S2 HPLC spectra of soluble products from the conversion of Organosolv lignin over the Pd/CeO₂ catalyst. Reaction conditions: Organosolv lignin, 0.10 g; catalyst, 0.20 g; MeOH, 50 mL; O₂, 0.1 MPa; 458 K; 24 h.

4. Effect of O_2 pressure on catalytic performances of Pd/CeO₂ for the conversion of 2-phenoxy-1-phenylethanol

Table S2 Catalytic conversion of 2-phenoxy-1-phenylethanol under different O₂ pressures^a

2-phenoxyl	$\frac{1}{5} = \frac{1}{5} = \frac{1}$	Catalyst methanol O ₂	PPone OCI MB	+ (Phol	
Entry	O ₂	Conv.		Y	′ield (%)		
	pressure (MPa)	(%)		ОН	O OCH3	° ↓	HO
1 ^{<i>b</i>}	0	6.7	0	0	0	3.4	4.7
2 ^c	0.02	10	0	0	3.1	5.7	4.8
3	0.1	64	12	0.03	14	38	48

^a Reaction conditions: PP-ol, 0.125 g (0.6 mmol); catalyst, 0.2 g; MeOH, 50 mL; 458 K; 24 h. ${}^{b}N_{2}$, 0.1 MPa. ${}^{c}N_{2}$ was added to keep the total pressure at 0.1 MPa.

5. Catalytic performances of Pd/CeO₂ for the conversion of 2-phenoxy-1-phenylethanone under different atmospheres

	$\beta 0 4 3 2 5 6 1$	Catalyst methanol N_2 or O_2	benzoic ar BA	OH + cid aceto	O HO + phenone pl	henol Phol
2-phenoxyl-1-phenylethanone						
	PP-one					
				netnyi benzoate	МВ	
Entry	Atmosphere	Conv.		Yield	d (%)	
		(%)	ОН	OCH3	o C	HO
1	N_2	27	0	0	20	18
2	O ₂	53	0.1	17	28	42

Table S3 Catalytic conversion of 2-phenoxy-1-phenylethanone under N₂ and O₂^a

^aReaction conditions: PP-ol, 0.125 g (0.6 mmol); catalyst, 0.2 g; MeOH, 50 mL; N₂ or O₂, 0.1 MPa; 458 K; 2 h.

6. Conversion of methanol over Pd/CeO₂ in the absence of O₂

Table S4 The gaseous component in the conversion of methanol over the Pd/CeO₂ catalyst under N_2^{a}

Gaseous component ^b (mol%)					
N ₂	H ₂	CO	CO ₂		
93.9	4.0	2.0	0.10		

^a Reaction conditions: MeOH, 50 mL; Pd/CeO₂, 0.1 g; N₂, 0.1 MPa; 458 K; 2 h.

 b H₂ was analyzed by an Agilent Micro 3000-GC equipped with a Molecular Sieve 5A column and a high-sensitivity thermal conductivity detector. CO and CO₂ were separated by a carbon molecular sieve (TDX-01), and were further converted to CH₄ by a methanation reactor, and were then analyzed by a flame ionization detector (FID).

7. CeO $_2$ -supported Pd, Au and Pt catalysts for the conversion of 2-phenoxy-1-phenylethanol

Table S5 Catalytic performances of CeO₂-supported Pd, Au and Pt catalysts for the conversion of 2-phenoxy-1-phenylethanol^a

OH 2-phenoxyl-1 PF	- - - phenyletha 2 - 1 - phenyletha	Catalyst methanol O ₂	→ Products			
Catalyst	Conv.		Yield (%)			
	(%)				HO	
CeO ₂	9.1	0	3.2	0	0	
Pd/CeO ₂	64	12	14	38	48	
Au/CeO ₂	58	11	24	24	46	
Pt/CeO ₂	42	7.0	19	11	28	
^a Reaction con MPa; 458 K; 24	ditions: PF h.	P-ol, 0.125 g	(0.6 mmol); catalyst,	0.2 g;	MeOH, 50 mL; (D ₂ , 0.1

Reference

1. N. Mahata and V. Vishwanathan, J. Catal., 2000, 196, 262.