Highly efficient visible-light-driven CO₂ reduction to CO using a Ru(II)–Re(I) supramolecular photocatalyst in an aqueous solution

Akinobu Nakada,^a Kazuhide Koike,^{b,c} Kazuhiko, Maeda, ^a and Osamu Ishitani*,
_{a,c}

^aDepartment of Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1-NE-1 O-okayama, Meguro-ku, Tokyo 152-8550, Japan.

^bNational Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba 305-8569, Japan

^cCREST, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan

Supporting Information

General Procedure

IR spectra were measured at 1 cm $^{-1}$ resolution with a JASCO FT/IR-610 spectrophotometer. UV-vis absorption spectra were measured with a JASCO V-565 spectrophotometer. Emission spectra were measured at 298 ± 0.1 K with a JASCO FP-6500 spectrofluorometer. Emission lifetimes were measured with a Horiba FluoroCube 1000U-S time-correlated single-photon-counting system (the excitation source was a nano-LED 460, and the instrument response was less than 1 ns).

¹H NMR spectra were measured in a CD₃OD solution using a JEOL ECA400II (400 MHz) system. Electrospray ionization-mass spectroscopy (ESI-MS) was performed with a Shimadzu LCMS-2010A system using HPLC-grade MeOH as a mobile phase.

Cyclic voltammograms were measured in an aqueous solution containing Na₂SO₄ (0.1 M) as a supporting electrolyte; the voltammograms were collected using an ALS/CHI CHI-760ES electrochemical analyzer with a glassy-carbon disk working electrode (3 mm diameter), a Pt counter electrode, and an Ag/AgCl reference electrode. For mononuclear model complexes, cyclic voltammetry was conducted in MeCN containing NEt₄BF₄ (0.1 M) with an Ag/AgNO₃ reference electrode was used instead of Ag/AgCl.

Materials

Tap water was purified using a Millipore Elix Essential 3 UV system and was used the same day. Other materials were reagent-grade quality and were used without further purification.

Synthesis

 $BI(CO_2H)H$, $^1BI^+(CO_2^-)$, 1 4-methyl-2,2'-bipyridine (mmb), 2 and the bridging ligand (bpy-CH₂-CH₂-bpy) 2 were prepared using previously reported methods. $Re\{bpy(CH_2PO_3H_2)_2\}(CO)_3Cl$ (**Re**) was also synthesized according to the reported method. 3

[Ru(dmb)₂(mmb)]Cl₂·5H₂O, **Ru**. A MeOH solution (50 mL) containing Ru(dmb)₂Cl₂·2H₂O (31 mg, 0.057 mmol) and mmb (11 mg, 0.063 mmol) was refluxed for 16 h. After MeOH was removed by evaporation, purification was performed using an ion-exchange column (SP Sephadex C-25, MeCN-water (1:1, v/v) containing NH₄PF₆) to give [Ru(dmb)₂(mmb)](PF₆)₂. To the PF₆ salts, 40 mL of EtOH-H₂O (1:1, v/v) was added; the solution was subsequently treated with an Amberlite IRA-900J ion-exchange resin in Cl form.

Yield: 28 mg (0.037 mmol, 64%) Anal. Calcd for C₃₃H₄₄Cl₂N₆O₅Ru: C, 52.50; H, 5.54; N, 10.50. Found: C, 52.95; H, 5.12; N, 10.47. 1 H-NMR (400 MHz, MeOH) δ / ppm: 8.67 (d, 1H, J = 8.0 Hz), 8.56 (s, 5H), 8.08 (dd, 1H, J = 8.0 Hz, 7.4 Hz), 7.81 (d, 1H, J = 6.4 Hz), 7.61 (m, 5H), 7.45 (dd, 1H, J = 7.4 Hz, 6.4 Hz), 7.31 (m, 5H), 2.58 (s, 15H). ESI-MS (eluent: MeOH) m/z: 319 ([M – 2Cl⁻]²⁺).

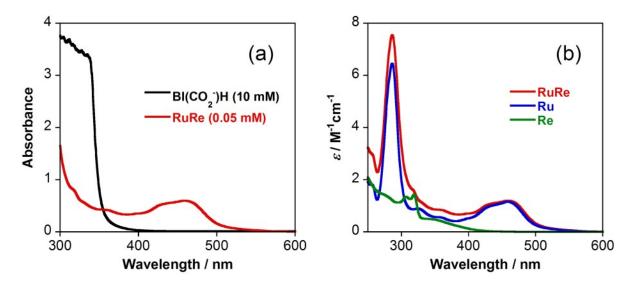
[Ru(dmb)₂(bpy-CH₂-CH₂-bpy)Re(CO)₃Cl]Cl₂·5H₂O, **RuRe**. An EtOH–MeOH (1:1, v/v) solution (50 mL) containing Ru(dmb)₂Cl₂·2H₂O (60 mg, 0.11 mmol) and bpy-CH₂-CH₂-bpy (110 mg, 0.32 mmol) was refluxed for 12 h. After removal of the solvent by evaporation, water was added to the residue and the remaining bpy-CH₂-CH₂-bpy was removed by filtration. An NH₄PF₆ saturated aqueous solution was added to the filtrate, and the precipitate was subsequently filtered to give [Ru(dmb)₂(bpy-CH₂-CH₂-bpy)](PF₆)₂. To the precipitate, an EtOH–acetone (4:1, v/v) mixed solution (50 mL) containing Re(CO)₃Cl (44 mg, 0.12 mmol) was added; the resulting mixture was then refluxed for 14 h. After removal of the solvent by evaporation, the residue was separated by column chromatography on SP Sephadex C-25 using a 1:1 mixed solution of MeCN–H₂O (1:1, v/v) containing NH₄PF₆ as an eluent and [Ru(dmb)₂(bpy-CH₂-CH₂-bpy)Re(CO)₃Cl](PF₆)₂ was successfully isolated. To the PF₆ salts, 40 mL of EtOH–H₂O (1:1, v/v) was added; the solution was then treated with an Amberlite IRA-900J ion-exchange resin in the Cl form. Yield: 75 mg (0.059 mmol, 53%) Anal. Calcd for C₄₉H₅₂Cl₃N₈O₈ReRu: C, 46.17; H, 4.11; N, 8.79. Found: C, 46.17; H, 4.11; N, 8.80. FT-IR (MeCN) v_{CO} / cm⁻¹: 2022, 1917, 1898. ESI–MS (eluent: MeOH) m/z: 557 ([M – 2Cl⁻]²⁺).

Photocatalytic Reaction

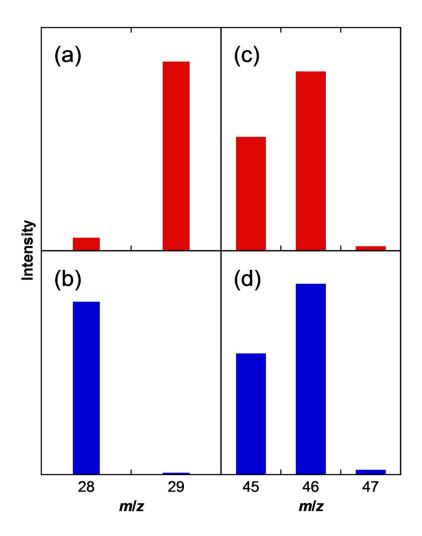
Photocatalytic reaction solutions were prepared in 11-mL test tubes (i.d. = 8 mm) by mixing the following (A) and (B) solutions: (A) a 2 mL aqueous solution containing the metal complex (0.05 mM), BI(CO₂H)H (20 mM), and NaOH (0.1 M), which was bubbled

with Ar for 30 min; (B) a 2-mL aqueous solution containing metal complexes (0.05 mM) and NaOH (0.1 M), which was bubbled with CO₂ for 30 min. The head space of the test tube was purged with CO₂. The solutions were irradiated using a merry-go-round irradiation apparatus at $\lambda > 500$ nm with a high-pressure Hg lump combined with a K₂CrO₄ (30% w, d = 1 cm) solution filter. Quantum yields of CO formation were determined by the following method. A solution prepared by the same procedures except for the concentration of the complex (0.3 mM) was placed in a quartz cubic cell (path length: 1 cm) and irradiated using an Asahi Spectra Co. Max-303 Xe lamp (300 W) combined with a 480-nm (FWHM = 10 nm) bandpass filter (Asahi Spectra Co., light intensity = 4.4×10^{-9} einstein/s). Absorbed photons were counted by a Shimadzu QYM-01 apparatus, and 99% of the irradiated photons were absorbed by the reaction solution. The temperatures of the solutions were controlled at 298 ± 2 K using an IWAKI CTS-134A constant-temperature system during irradiation. The gaseous reaction products, i.e., CO and H₂, were analyzed by a GC-TCD (GL Science GC 323). HCOO⁻ in the liquid phase was analyzed by following procedure: Ethyl acetate (2 mL) and HCl (1 mL, 36%) were added to 2 mL of the sample solution, followed by extraction; the ethyl acetate phase was then analyzed using a GC-BID (Shimadzu Tracera).

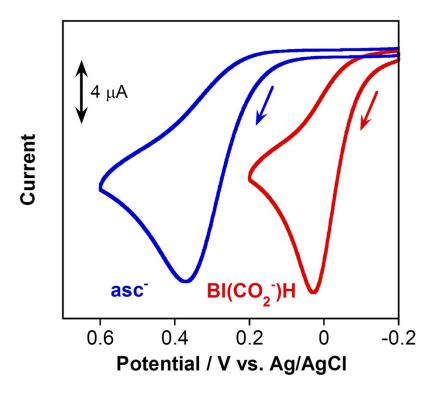
¹³CO₂ Labeling Experiment


The $^{13}\text{CO}_2$ labeling experiments were performed using 1 mL of an aqueous solution containing **RuRe** (0.05 mM) and BI(CO₂H)H (10 mM) in an 8 mL test tube (*i.d.* = 1 cm). The test tube was degassed using the freeze-pump-thaw method, and then $^{13}\text{CO}_2$ (99%, 609 mmHg) was introduced into it. GC-MS analyses were conducted using a Shimadzu GCMS-QP2010 Ultra combined with an MS-5A column for the gaseous phase and a TC-WAX column for the liquid phase.

Measurement of UV-vis Absorption Spectra of Ru During Irradiation


A solution prepared by the same method for the photocatalytic reaction of \mathbf{Ru} in a quartz cubic cell (path length: 1 cm) was irradiated using an Asahi Spectra Co. Max-303 Xe lamp (300 W) combined with a 480 nm (FWHM = 10 nm) band-pass filter purchased from Asahi Spectra Co. (the light intensity was 4.6×10^{-8} einstein/s). During irradiation, absorption spectra were measured using a Shimadzu QYM-01 apparatus. The temperatures of the solutions were controlled at 298 ± 2 K using an IWAKI CTS-134A constant-temperature system during irradiation.

Reference


- (1) Brunet, P.; Wuest, J. D. Can. J. Chem. 1996, 74, 689.
- (2) Lepretre, J.-C.; Bar, B.; Chauvin, J.; Deronzier, A.; Lefebvre, B. *Inorg. Chem. Commun.* 2004, **7**, 47.
- (3) Nakada, A.; Koike, K.; Nakashima, T.; Morimoto, T.; Ishitani, O. *Inorg. Chem.* 2015, **54**, 1800.

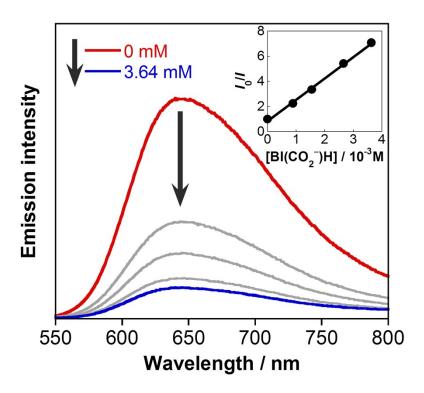
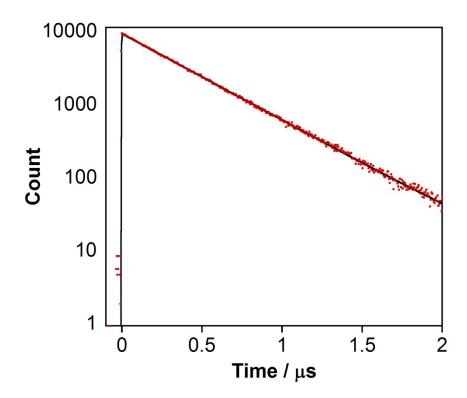
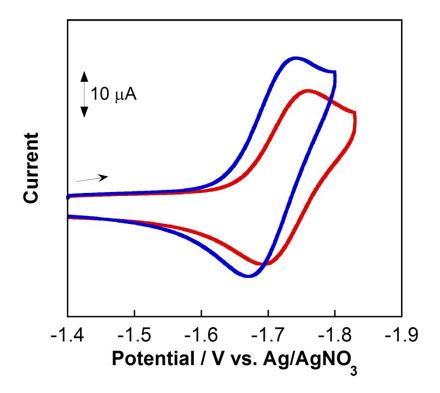
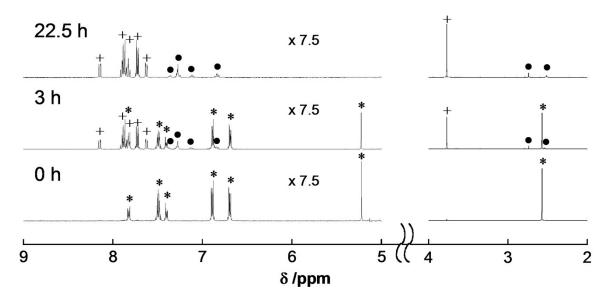

Fig. S1 (a) UV–vis absorption spectra of (a) BI(CO₂⁻)H (10 mM, black) and **RuRe** (0.05 mM, red) in a NaOH (0.1 M) aqueous solution and (b) **RuRe** (red), a mononuclear model complex of the Ru(II) photosensitizer unit, [Ru(dmb)₂(mmb)]²⁺ (**Ru**; dmb: 4,4'-dimethyl bipyridine; mmb: 4-methyl bipyridine, blue), and a mononuclear model-complex of the Re(I) catalyst unit, Re{bpy(CH₂PO₃H₂)₂}(CO)₃Cl (**Re**; bpy(CH₂PO₃H₂)₂: 4,4'-bis(methylphosphonic acid)-2,2'-bipyridine, green) in a NaOH (0.1 M) aqueous solution.

Fig. S2 (a, b) GC-mass spectra attributed to CO (a) produced under a $^{13}\text{CO}_2$ atmosphere and (b) under a $^{12}\text{CO}_2$ atmosphere after 10 h of irradiation. (c, d) GC-mass spectra attributed to the formic acid and formate produced (c) under a $^{13}\text{CO}_2$ atmosphere and (d) under a $^{12}\text{CO}_2$ atmosphere after 10 h of irradiation. NaOH (0.1 M) aqueous solutions containing **RuRe** (0.05 mM) and BI(CO₂⁻)H (10 mM) were irradiated at $\lambda > 500$ nm light.

Fig. S3 Cyclic voltammograms of $BI(CO_2^-)H$ (red) and asc^- (blue) measured with an Ag/AgCl reference electrode in aqueous solutions containing Na_2SO_4 (0.1 M) as a supporting electrolyte. The scan rate was 100 mV·s⁻¹. An aqueous solution containing NaOH (0.1 M) was used for $BI(CO_2^-)H$.

Fig. S4 Emission spectra of **RuRe** in NaOH (0.1 M) aqueous solutions containing various concentrations (0–3.64 mM) of BI(CO₂⁻)H. The excitation wavelength was 456 nm. The inset shows the Stern–Volmer plots for the emission quenching.

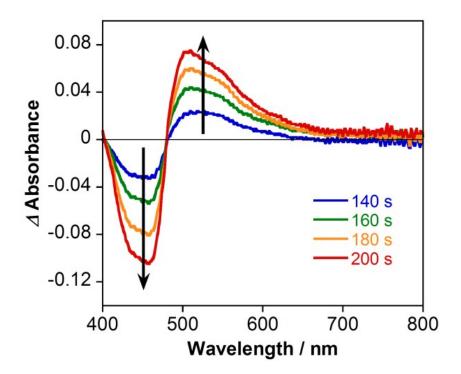

Fig. S5 Decay of emission from RuRe (red) excited at $\lambda_{ex} = 456$ nm and observed at $\lambda_{em} = 630$ nm in a NaOH (0.1 M) aqueous solution under an Ar atmosphere. The data was fitted with a single exponential function (black).

Fig. S6 Cyclic voltammograms of \mathbf{Ru} (red) and $\mathrm{Re}(\mathrm{mmb})(\mathrm{CO})_3\mathrm{Cl}$ (blue) measured with an $\mathrm{Ag/AgNO}_3$ reference electrode in MeCN solutions containing $\mathrm{NEt_4BF_4}$ (0.1 M) as a supporting electrolyte. The scan rate was 200 mV·s⁻¹.

Fig. S7 ¹H NMR spectra of BI(CO₂⁻)H (*), BI⁺(CO₂⁻) (+), and other product(s) (•) after the photocatalytic reaction: an NaOD (0.1 M)–D₂O solution containing **RuRe** (0.05 mM) and BI(CO₂H)H (10 mM) was irradiated at $\lambda_{ex} > 500$ nm under a CO₂ atmosphere (0, 3, and 22.5 h).

Fig. S8 Differential UV-vis absorption spectra of a NaOH (0.1 M) aqueous solution containing **Ru** (0.05 mM) and BI(CO₂⁻)H (10 mM) during irradiation (140–200 s) at λ_{ex} = 480 nm (4.6 × 10⁻⁸ einstein s⁻¹).