Electronic Supplementary Information (ESI)

Rusted iron wire waste in to high performance anode $(\alpha$ -Fe₂O₃) for Li-ion battery: An efficient waste management approach

Dattakumar Mhamane,^{*a*} Hyun-Kyung Kim^{*a*} Vanchiappan Aravindan,^{*b*,*} Kwang Chul Roh,^{*c*} Madhavi Srinivasan^{*b,d*,*} and Kwang-Bum Kim^{*a*,*}

^{a.}Department of Materials Science and Engineering, Yonsei University, 134 Shinchon-dong, Seodaemoongu, Seoul 120-749, Republic of Korea. Tel: +82-2-3657745, E-mail: <u>kbkim@yonsei.ac.kr</u>

^{b.}Energy Research Institute @ NTU (ERI@N), Research techno Plaza, Nanyang Technological University, Singapore 637553, Singapore. Email: <u>aravind_van@yahoo.com</u>

^cEnergy Efficient Materials Team, Energy & Environmental Division Korea Institute of Ceramic Engineering & Technology 101, Soho-ro, Jinju 660-031, Republic of Korea.

^dSchool of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore. Email: <u>madhavi@ntu.edu.sg</u>

Morphology	Capacity (Cycle) mAh g	Current rate (A g ⁻¹)	Electrode Composition (AM:SP:B) [*]	Reference
Interconnected α -Fe O ₂₃ NPs	> 1400 (79)	0.1	40:50:10	This work
Interconnected α -Fe O ₂ NPs	~800 (215)	0.2	60:30:10	This work
Elongated	840 (40)	0.1	70:15:15	17
Hollow Nanofibers	~ 1293 (40)	0.06	30:50:20	21
Nanorods	~ 900 (30)	0.2	60:20:20	22
Discs	~550 (100)	0.1	50:25:25	23
Spindles	911 (50)	0.2	80:10:10	24
Mesoporous	1293 (50)	0.1	50:40:10	30
Spindles	~900 (40)	0.1	30:50:20	39
Nanofibers	~1095 (50)	0.05	70:15:15	41
Cubes	458 (100) (hollow) 177 (100) (solid)	0.1	70:20:10	42
Nanospindles Hollow	456 (100)	0.1	75:15:10	43
Nanorods array	562 (50)	0.2	75:15:10	44
Nanotubes	510 (50)	0.1	85:10:5	45
Spheres	863 (50)	0.1		46
Spheres	710 (100) 340 (100)	0.2	70:20:10	47
Melon like	662 (100)	0.2	70:20:10	48

Table S1: Comparison of $Li/\alpha-Fe_2O_3$ half-cell results with literature reports.

AM: Active material, SP: Carbon Black (Super-P), B: Binder

Figure S1: X-ray diffraction plot for intermediate FeOOH.

Figure S2: (a) UV-visible absorption plot and (b) Raman plot for α -Fe₂O₃ NPs.

ICP-AES analysis for rust scratched from rusted wires (precursor) and final α-Fe₂O₃ NPs.

Sample preparation for ICP-AES analysis

A particular amount of rust (scratched from rusted wire) is dissolved in (3 mL) aqua regia and 1 mL conc. H_2O_2 followed by microwave digestion treatment. Then, the sample was collected by diluting the solution up to 50 mL with D. I. water that was named as the stock solution. This solution was used to detect possible metal impurities such as Cu, Al, Cr and Ni. However, for the detection of Fe the stock solution was further diluted 100 times by D. I. water. In case of α -Fe₂O₃ NPs, the sample preparation was similar to above discussed process except 3 mL conc. HNO₃ was added instead of 3 mL aqua regia.

Table S2

Samples	Fe (Fe ₂ O ₃)	Cu (CuO)	Al (Al ₂ O ₃)	Cr (CrO ₂)	Ni (NiO)	Total Metal
	wt. %	wt. %	wt. %	wt. %	wt. %	wt. %
Precursor (Rust Scratched from rusted wires)	90.99 (63.27)	0.058 (0.72)	0.3961 (0.7471)	0.023 (0.48)	0.0225 (0.028)	91.4896
Interconnected	98.35	0.004	0.0132	0.0034	0.0130	98.3836
α-Fe ₂ O ₃ NPs	(68.764)	(0.005)	(0.0249)	(0.007)	(0.0162)	

Figure S3: (a) Fe2p XPS plots for α -Fe₂O₃ and FeOOH and b) O1s XPS plots for α -Fe₂O₃ and FeOOH.

Figure S4: (a) FESEM images for a) Rust (scratched from rusted wire) b) Intermediate (FeOOH) and c) Interconnected α -Fe₂O₃ NPs.

EDAX analysis for α -Fe₂O₃ NPs.

Figure S5 EDAX plot for α -Fe₂O₃ NPs

Table S3: EDAX analysis summary

Element	Line Type	k factor	Absorption Correction	Wt.%	Wt.% Sigma	Atomic %
0	K series	2.13875	1.00	32.15	1.66	62.32
Fe	K series	1.04302	1.00	67.85	1.66	37.68
Total:				100.00		100.00

Figure S6: (a) Capacity *vs.* cycle number plot for Li/α -Fe₂O₃ half-cell (Electrode composition: 40:50:10) at current density of 0.1 A g⁻¹, b) Rate capability plot for Li/α -Fe₂O₃ half-cell at various current densities.

Figure S7. (a) Typical galvanostatic charge-discharge curves of $\text{Li}/\text{LiMn}_2\text{O}_4$ (Merck KGaA, Germany) at current density of 0.1 A g⁻¹ between 3.5-4.3 V vs. Li in ambient temperature conditions, and (b) Plot of capacity vs. cycle number

Figure S8. Differential capacity profile of $LiMn_2O_4/\alpha$ -Fe₂O₃ NPs cells cycled at current density of 0.1 A g⁻¹.

Figure S9. Galvanostatic charge–discharge curves for $\text{LiMn}_2\text{O}_4/\alpha$ -Fe₂O₃ NPs (pre-treated) (Electrode composition: 40:50:10) full cell at a current density of 0.1 A g⁻¹, (b) Plot of specific capacity *vs.* cycle number plot for $\text{LiMn}_2\text{O}_4/\alpha$ -Fe₂O₃ NPs (pre-treated) full cell at 0.1 A g⁻¹.