Supplementary Information

Enantioselective aerobic oxidation of olefins by magnetite nanoparticles at room temperature: a chiral carboxylic acid strategy

Leila Hadian-Dehkordi and Hassan Hosseini-Monfared*

Department of Chemistry, University of Zanjan 45195-313, Zanjan, Islamic Republic of Iran. Corresponding author. Tel.: +98 24 33052576; fax: +98 241 33583203. *E-mail address*: monfared@znu.ac.ir (H. Hosseini-Monfared).

Content

Fig. S1 Thermal gravimetric analysis of Fe₃O₄/tar-NPs

Fig. S2 Histogram of the number-size-distribution for Fe₃O₄/tart-NPs

Fig. S3 Magnetization curve of Fe₃O₄/tart-NPs

Table S1 Comparison of the olefin oxidation by different catalysts

Fig. S4 Reuse of the catalyst in the aerobic oxidation of cyclohexene

Fig. S5. Comparison of the FT-IR spectra of the fresh and used Fe_3O_4 /tart-NPs

Fig. S6 Nitrogen adsorption-desorption isotherm of the fresh Fe_3O_4 /tart-NPs and used Fe_3O_4 /tart-NPs after catalysis

Fig. S7 ¹H NMR spectrum in CDCl₃ of the crude product obtained upon oxidation of 1-decene.

Fig. S8 ¹H NMR spectrum in CDCl₃ of the crude product obtained upon oxidation of trans-stilbene .

Fig. S9¹³C NMR spectrum in CDCl₃ of the crude product obtained upon oxidation of *trans*-stilbene

Fig. S1 Thermal gravimetric analysis of Fe_3O_4 /tar-NPs

Size Distribution by Number

Fig. S2 Example of a histogram of the number-size-distribution for Fe_3O_4 /tart-NPs from dynamic light scattering (DLS) with medium diameter (hydrodynamic diameter) of 74 nm.

The magnetic properties of the synthesized Fe_3O_4 /tart-NPs were analyzed by vibrating sample magnetometry (VSM). The field-dependent magnetization curve shown in Fig. 5 indicates the magnetization as a function of applied magnetic field, measured at room temperature. The magnetization value of Fe_3O_4 /tart-NPs is approximately the same with the value of Fe_3O_4 -NPs and higher than the magnetization of core-shell Fe_3O_4 /SiO₂-NPs.¹ This finding shows the negligible effect of diamagnetic tartaric acid coating over the Fe_3O_4 -NPs and a favorable property for magnetic separation by a conventional magnet. The hysteresis loops of the powdered material showed no magnetic hysteresis, with both the magnetization and demagnetization curves passing through the origin, which clearly indicates the superparamagnetic nature of the material. Moreover, the synthesized heterogeneous nanocatalysts possess strong magnetic responsivity due to a high saturation magnetization value (55 emu g⁻¹).

Fig. S3 Magnetization curve of Fe₃O₄/tart-NPs.

Ménage *et al.* used chiral bipyridine to construct a catalytically-active diiron complex which was effective in the epoxidation of a range of olefins in up to 63% ee (for *trans*-b-methylcinnamate; 35% yield) using 0.2 mol% of catalyst with peracetic acid as the oxidant.² The majority of olefins were oxidised in rather low ee (max 28%) however. The results of the oxidation of *cis*- and *trans*-stilbene by dioxygen in the presence of some homogeneous and heterogeneous iron catalysts are compared with catalyst Fe₃O₄/tart-NPs in Table S1. In addition to epoxide selectivity and conversion percent, the reaction conditions of room temperature, O₂ pressure 2 bar and reaction time of 7 h for our new catalyst Fe₃O₄/tart-NPs are greatly remarkable.

Entry	Catalyst	Substrate	Conditions (sol, T, t, atm, additives or co- catalyst)	Conversion (%)	Epoxide Selectivity (%)	Ref
1	FeCl₃·6H₂O	trans-stilbene	CH₃CN, rt, 20 h, O₂ 1 atm, imidazole/β-keto	91	26	3
		<i>cis</i> -stilbene	ester	28	35	
3	Fe ²⁺ -NaY	trans-stilbene	DMF, 100 °C, 24 h, O_2 40 atm, no additive	34	60	4
		<i>a</i> -methylstyrene		82	12	
4	[NMe ₄] ₃ [Fe(opba)(CO ₃)]·5H ₂ O	trans-stilbene	Fluorobenzene, rt, 3 h, O ₂ 1 atm,	95	95	5
	(opba = ortho-phenylenebis(oxamato))	<i>cis</i> -stilbene	pivaldehyde	20	15	
5	Fe ₃ O₄/tart-NPs	trans-stilbene	CH₃CN, 25 °C, 7 h, O₂ atm, isobutyraldehyde	100	56	This
		cis-stilbene		100	92	work

Table S1 Comparison of the olefin oxidation by different catalysts ^a

Fig. S4 Reuse of the catalyst in the aerobic oxidation of cyclohexene.

Conditions: catalyst Fe₃O₄/tart-NPs 1.0 mg, isobutyraldehyde 5 mmol, substrate 2 mmol, CH₃CN 3 ml, chlorobanzene 0.1 g, oxygen 2 bar, time 7 h at 25 °C.

Fig. S5. Comparison of the FT-IR spectra of the fresh and used Fe₃O₄/tart-NPs

The textural properties of fresh Fe₃O₄/tart-NPs and used Fe₃O₄/tart-NPs were monitored by N₂ adsorption–desorption analysis and the structural parameters for these materials are presented in Table S2. The used catalyst shows an increase in its specific surface area and pore volume (Fig. S6). The surface area of the used catalyst Fe₃O₄/tart-NPs increased from 85.454 m² g⁻¹ to 107.580 m² g⁻¹ after two times recycle.

Catalyst	Surface area	Pore volume	Pore diameter
	$(m^2 g^{-1})$	$(cm^3 g^{-1})$	(nm)
Fresh Fe ₃ O ₄ /tart-NPs	85	0.19	8.77
Used Fe ₃ O ₄ /tart-NPs	108	0.1 9	7.06

Table S2 Textural properties of fresh Fe₃O₄/tart-NPs and used Fe₃O₄/tart-NPs.

Fig. S6 Nitrogen adsorption-desorption isotherm of the fresh Fe_3O_4 /tart-NPs and used Fe_3O_4 /tart-NPs after catalysis

Fig. S7 ¹H NMR spectrum in CDCl₃ of the crude product obtained upon oxidation of 1-decene provided 77% conversion with 1,2-epoxydecane 77%.

Fig. S8 ¹H NMR spectrum in CDCl₃ of the crude product obtained upon oxidation of transstilbene provided 100% conversion with trans-stilbene oxide 48%, cis-stilbene oxide 8% and benzaldehyde 44%.

Fig. S9 13 C NMR spectrum in CDCl₃ of the crude product obtained upon oxidation of *trans*-stilbene

¹ S. Sadighian, K. Rostamizadeh, H. Hosseini-Monfared and M. Hamidi, Colloids Surf., B, 2014, 117, 406.

² C. Marchi-Delapierre, A. Jorge-Robin, A. Thibon and S. Ménage, Chem. Commun., 2007, 1166.

³ K. Schröder, B. Join, A. J. Amali, K. Junge, X. Ribas, M. Costas and M. Beller, Angew. Chem. Int. Ed., 2011, 50, 1425.

⁴ J. Liang, Q. Zhang, H. Wu, G. Meng, Q. Tang and Y. Wang, *Catal. Commun.*, 2005, 5, 665.

⁵ R. Ruiz, M. Triannidis, A. Aukauloo, Y. Journaux, I. Fernandez, J. R. Pedro, B. Cervera, I. Castro and M. C. Munoz, Chem. Commun., 1997, 2283.