Electronic Supplementary Information (ESI)

Electrode instead of catalyst and enzyme. A greener

protocol for the synthesis of new 2-

hydroxyacetamides derivatives containing γ-lactone

ring

Abbas Maleki,* Davood Nematollahi,* Fereshteh Rasouli and Azam

Zeinodini-Meimand

Table of Contents

I. Apparatus

II.Reagents

III. Electrochemical synthesis

IV. Characterization of Products

V. FTIR, ¹H NMR, ¹³C NMR and mass spectra of 9a-17a

VI. Crystallography of 9a

Apparatus

Cyclic voltammetry, controlled-potential coulometry and preparative electrolysis were performed using an Autolab model PGSTAT302N potentiostat/galvanostat. The working electrode used in the voltammetry experiments was a glassy carbon disc (1.8 mm² area) and platinum wire was used as a counter electrode. The working electrode used in controlled-potential coulometry and macroscale electrolysis was an assembly of four carbon rods (6 mm diameter and 4 cm length), placed as single rods in the edges of a square, and large stainless steely gauze constitutes the counter electrode. The working electrode potentials were measured versus Ag/AgCl (all electrodes from AZAR electrode). The electrolysis was performed in a simple cell (a narrow beaker type cell, 100 ml), equipped with a magnetic stirrer.

Arrangement of the electrodes and cell

Reagens

3,5-di-*tert*-butylcatechol, *n*-butylamine, *n*-propylamine, ethylamine, methylamine, benzylamine, cyclopentylamine, cyclohexylamine, cycloheptylamine, cyclooctylamine were reagent-grade materials and carbonate salts were of pro-analysis grade, from E. Merck. These chemicals were used without further purification.

Electrochemical synthesis 9a-17a: General procedure

Controlled-potential method

In a typical procedure, four carbon rods as working electrodes, a stainless steely gauze as auxiliary electrode along with an Ag/AgCl reference electrode were immersed into an undivided cell containing a mixture (60 mL) of water (carbonate buffer, c = 0.2 M, pH = 11)/acetonitrile (40/60 v/v). This mixture was pre-electrolyzed at the 0.05 V versus Ag/AgCl, then 1 mmol of 3,5-di-*tert*-butylcatechol and 1 mmol of **9-17** were added to the cell and the mixture was stirred until homogeneity was achieved. The electrolysis was terminated when the decay of the current became more than 95% (within about 3-4 hours). The process was interrupted during the electrolysis and the carbon anode was washed in acetone in order to reactivate it. At the end of electrolysis, after evaporation of acetonitrile, the residue was transferred to a separating funnel and extracted with cyclohexane or *n*-hexane. The extracted portion was recrystallized in *n*-hexane or chloroform. After purification, all products were characterized by: IR, ¹H NMR, ¹³C NMR and MS. Moreover, product **9a** was also characterized by single crystal X-ray diffraction.

Constant-current method (Galvanostatic method)

A mixture (60 mL) of water (carbonate buffer, c = 0.2 M, pH = 11)/acetonitrile (40/60 v/v) containing 1 mmol of 3,5-di-*tert*-butylcatechol and 1 mmol of **9-17** was electrolyzed in an undivided cell equipped with a carbon anode (an assembly of four rods, with 30 cm²) and a large stainless steely gauze cathode at 25 °C under a constant-current density of 1.0 mA cm⁻². The other steps are similar to those described above in the controlled-potential method.

Entry	Product	Yields ^b (%)
1	9a	61
2	10a	54
3	11a	62
4	12a	50
5	13a	55
6	14a	60
7	15 a	50
8	16a	62
9	17a	70
^a General procedure: 1 (1 mmol), 9-17 (1 mmol), acetonitrile (24ml), carbonat buffer (36ml), current density 1 mA cm ⁻² . ^b Yield of isolated product.		

Table S1. Electrochemical synthesis of 9a-17a at constant current condition^a

Characterization of Products

9a: *N*-butyl-2-(2,4-di-tert-butyl-5-oxo-2,5-dihydrofuran-2-yl)-2-hydroxyacetamide

¹H NMR (300 MHz, acetone-*d*₆), δ (ppm): 0.88 (t, 3H), 1.06 (s, 9H), 1.21 (s, 9H), 1.32 (m, 2H), 1.44(m, 2H), 3.20 (m, 2H), 4.49 (d, 1H), 4.61 (d, 1H), 7.12 (NH, 1H), 7.31 (ring, 1H); ¹³C NMR (75 MHz, acetone-*d*₆), δ (ppm): 13.2, 19.8, 25.7, 27.4, 31.3, 31.39, 39.3, 37.7, 39.2, 73.6, 89.3, 142.7, 146.5, 169.9, 170.7; IR (KBr): 3371, 3323, 1741, 1658, 1313 cm⁻¹; MS (EI) *m/z* (relative intensity): 326 [M+H⁺] (5), 269 (4), 196 (95), 181 (100), 169 (45), 130 (30), 57(18).

10a: N-propyl-2-(2,4-di-tert-butyl-5-oxo-2,5-dihydrofuran-2-yl)-2-hydroxyacetamide

¹H NMR (300 MHz, acetone-*d*₆), δ (ppm): 0.86 (t, 3H), 1.05 (s, 9H), 1.20 (s, 9H), 1.46 (t, 2H), 3.07 (m, CH₂), 4.50 (d, 1H), 4.73 (d, 1H), 7.10 (NH, 1H), 7.32 (ring, 1H); ¹³C NMR (75 MHz, acetone-*d*₆), δ (ppm): 10.9, 22.3, 25.6, 27.4, 31.3, 37.7, 41.2, 73.7, 89.4, 142.7, 146.57, 170.0, 170.8; IR (KBr): 3381, 3327, 1743, 1658, 1315 cm⁻¹; MS (EI) *m/z* (relative intensity): 313 [M+2H⁺] (3), 312 [M+1H⁺] (10), 196 (55), 181 (63), 169 (42), 116 (42), 57 (100), 43 (98), 41 (90).

11a: N-ethyl-2-(2,4-di-tert-butyl-5-oxo-2,5-dihydrofuran-2-yl)-2-hydroxyacetamide

¹H NMR (300 MHz, acetone-*d*₆), δ (ppm): 1.07 (s, 12H), 1.21 (s, 9H), 3.19 (t, 2H), 4.50 (q, 2H), 7.13 (NH,1H), 7.31 (ring,1H); ¹³C NMR (75 MHz, acetone-*d*₆), δ (ppm): 13.9, 25.6, 27.4, 31.3, 34.2, 37.6, 73.5, 89.2, 142.8, 146.4, 169.7, 170.7; IR (KBr): 3385, 3321, 1741, 1663, 1317 cm⁻¹; MS (EI) *m*/*z* (relative intensity): 300 [M+3] (1), 299 [M+2] (4), 298 [M+1] (40), 296 (1), 196 (12), 181(20), 102 (8), 72 (25), 57 (100), 41 (61), 29 (75).

12a: N-methyl-2-(2,4-di-tert-butyl-5-oxo-2,5-dihydrofuran-2-yl)-2-hydroxyacetamide

¹H NMR (300 MHz, acetone-*d*₆), δ (ppm): 1.07 (s, 9H), 1.21 (s, 9H), 2.70 (d, CH₃), 4.47 (d, 1H), 4.60 (d, 1H), 7.10 (NH, 1H),7.30(ring, 1H); ¹³C NMR (75 MHz, acetone-*d*₆), δ (ppm): 25.5, 25.6, 27.4, 31.2, 37.5, 73.7, 89.3, 142.8, 146.4, 170.4, 170.7; IR(KBr): 3362, 3319, 1740, 1664, 1313 cm⁻¹; MS (EI) *m/z* (relative intensity): 285 [M+2] (1), 284 [M+1] (6), 196 (39), 181 (65), 169 (55), 125 (32), 57 (100), 41 (54), 29 (63).

13a: N-benzyl-2-(2,4-di-tert-butyl-5-oxo-2,5-dihydrofuran-2-yl)-2-hydroxyacetamide

¹H NMR (300 MHz, acetone-*d*₆), δ (ppm): 1.01 (s, 9H), 1.22 (s, 9H), 2.97(s, 2H), 4.28 (d, 1H), 4.40 (d, 1H), 4.60 (d, 1H), 4.74 (d, 1H), 7.27 (m, 6H, aromatic), 7.61 (NH, 1H); ¹³C NMR (75 MHz, acetone-*d*₆), δ (ppm): 170.8, 170.2, 146.5, 142.8, 138.6, 128.29, 127.8, 127.0, 89.4, 74.1, 43.20, 37.7, 31.3, 27.4, 25.7; IR (KBr): 3377, 3292, 3086, 2960, 2872, 1739, 1662, 1315 cm⁻¹; MS (EI) *m*/*z* (relative intensity): 361 [M+2] (2), 360 [M+1] (12), 285 (5), 196 (40), 181 (50), 164 (30), 106 (40), 91 (100), 57 (80), 41 (55), 29 (33).

14a: N-cyclopentyl-2-(2,4-di-tert-butyl-5-oxo-2,5-dihydrofuran-2-yl)-2-hydroxyacetamide

¹H NMR (500 MHz, CDCl₃), δ (ppm): 1.12 (s, 9H), 125 (s, 9H), 1.40 (m, 2H), 1.57 (m, 2H), 1.69 (m, 2H), 1.94 (m, 2H), 4.11(m, 2H), 4.47 (s, 1H), 5.75 (d, lactone ring, 1H), 7.13 (s, NH, 1H); ¹³C NMR (125 MHz, CDCl₃), δ (ppm): 24.1, 24.1, 26.6, 28.5, 32.2, 32.9, 33.7, 38.8, 52.4, 73.0, 89.9, 144.6, 146.4, 169.8; IR (KBr): 1636, 1733, 2958, 3309

cm⁻¹; MS (EI) *m/z* (relative intensity): 339 [M+2] (20), 338 [M+1] (80), 337 [M] (10), 263 (18), 197 (75), 181 (90), 142 (30), 84 (45).

15a: N-cyclohexyl-2-(2,4-di-tert-butyl-5-oxo-2,5-dihydrofuran-2-yl)-2-hydroxyacetamide

¹H NMR (500 MHz, CDCl₃), δ (ppm): 1.12 (s, 9H), 1.18 (m, 2H), 1.24 (s, 9H), 1.33 (m, 3H), 1.61 (q, 1H), 1.71 (q, 1H), 1.83, 1.92 (d, 1H), 3.63 (m,1H), 4.47 (s,1H), 5.71 (lactone ring, 1H), 7.14 (NH, 1H); ¹³C NMR (125 MHz, CDCl₃), δ (ppm): 171.6, 169.4, 146.5, 144.4, 89.9, 73.0, 50.0, 38.8, 33.3, 32.9, 32.2, 32.0, 28.5, 26.6, 25.7, 25.2; IR (KBr): 3439, 3320, 2959, 2937, 2857, 1753, 1649, 1551 cm⁻¹; MS (EI) *m/z* (relative intensity): 352 [M+1] (2), 295 (1), 277 (2), 197 (5), 196 (39), 181 (50), 83 (48), 67 (48), 57(100), 41(77).

16a: N-cycloheptyl-2-(2,4-di-tert-butyl-5-oxo-2,5-dihydrofuran-2-yl)-2-hydroxyacetamide

¹H NMR (500 MHz, CDCl₃), δ (ppm): 7.14 (s, 1H), 5.78 (d, 1H), 4.45 (s, 1H), 4.14 (s, 1H), 3.81 (m, 1H), 1.88 (m, 2H), 1.61 (m, 4H), 1.47 (m, 2H), 1.43 (m, 4H), 1.39 (s, 9H), 1.11 (s, 9H); ¹³C NMR (125 MHz, CDCl₃), δ (ppm): 171.6, 169.1, 146.5, 144.4, 89.9, 73.1, 52.2, 38.8, 35.3, 35.0, 32.2, 28.5, 28.4, 28.4, 26.6, 24.4, 24.4; IR (KBr): 3310, 2957,

2932, 2866, 1736, 1632 cm⁻¹; MS (EI) *m/z* (relative intensity): 367 [M+2] (1), 366 [M+1] (2), 269 (0.5), 196 (2), 181 (2), 57 (100), 41 (17).

17a: N-cyclooctyl-2-(2,4-di-tert-butyl-5-oxo-2,5-dihydrofuran-2-yl)-2-hydroxyacetamide

¹H NMR (500 MHz, CDCl₃), δ (ppm): 7.14 (s, 1H), 5.77 (d, 1H), 4.44 (d, 1H), 4.14 (s, 1H), 3.87 (t, 1H), 1.77 (m, 2H), 1.65 (t, 2H), 1.55 (m, 10H), 1.24 (s, 9H), 1.12 (s, 9H); ¹³C NMR (125 MHz, CDCl₃), δ (ppm): 171.6, 169.1, 146.5, 144.4, 89.9, 73.0, 51.2, 38.9, 32.6, 32.3, 32.2, 28.5, 27.4, 27.3, 26.6, 25.9, 24.0; IR (KBr): 3316, 2926, 1737, 1633, 1533 cm⁻¹; MS (EI) *m/z* (relative intensity):382 [M+3] (1), 380 [M+1] (6), 364 (2), 323 (6), 290 (10), 226 (12), 195 (100), 184 (50), 181 (85), 169 (80), 125 (40), 83 (53), 69 (55), 56 (98), 41 (42).

FTIR, ¹H NMR, ¹³C NMR and mass spectra

FTIR of 9a

¹H NMR of 9a

Expanded ¹H NMR of 9a

¹³C NMR of 9a

Expanded ¹³C NMR of 9a

MS of 9a

FTIR of 10a

¹H NMR of 10a

Expanded ¹H NMR of 10a

¹³C NMR of 10a

Expanded ¹³C NMR of 10a

MS of 10a

IR of 11a

¹H NMR of 11a

Expanded ¹H NMR of 11a

¹³C NMR of 11a

Expanded ¹³C NMR of 11a

MS of 11a

IR of 12a

¹H NMR of 12a

Expanded ¹H NMR of 12a

¹³C NMR of 12a

Expanded ¹³C NMR of 12a

MS of 12a

IR of 13a

¹H NMR of 13a

Expanded ¹H NMR of 13a

¹³C NMR of 13a

Expanded ¹³C NMR of 13a

MS of 13a

IR of 14a

¹H NMR of 14a

Expanded ¹H NMR of 14a

Expanded ¹H NMR of 14a

¹³C NMR of 14a

Expanded ¹³C NMR of 14a

MS of 14a

FTIR of 15a

¹HNMR of **15a**

Expanded ¹H NMR of 15a

¹³C NMR of 15a

Expanded ¹³C NMR of 15a

MS of 15a

IR of 16a

Expanded ¹H NMR of 16a

Expanded ¹H NMR of 16a

Expanded ¹H NMR of 16a

¹³C NMR of 16a

Expanded ¹³C NMR of 16a

MS of 16a

FTIR of 17a

¹H NMR of 17a

Expanded ¹H NMR of 17a

Expanded ¹H NMR of 17a

¹³C NMR of 17a

MS of 17a

VI. Crystallography of 9a

Bond lengths		
C(2)–C(7)	1.326(3)	
C(7)–C(8)	1.498(2)	
C(8)–O(2)	1.459(2)	
C(1)–O(2)	1.353(2)	
C(1)–O(1)	1.205(2)	
C(13)–C(14)	1.520(3)	
C(8)–C(13)	1.565(3)	
C(14)–N(1)	1.330(3)	
C(14)–O(4)	1.233(2)	
C(15)–N(1)	1.459(3)	
Bond angles		
O(2) $C(12)$ $C(8)$		
O(3) = C(13) = C(8)	112.89(16)	
O(3)-C(13)-C(14)	112.89(16) 109.89(16)	
O(3)-C(13)-C(14) C(14)-C(13)-C(8)	112.89(16) 109.89(16) 110.50(16)	
O(3)-C(13)-C(14) O(3)-C(13)-C(14) C(14)-C(13)-C(8) O(4)-C(14)-N(1)	112.89(16) 109.89(16) 110.50(16) 122.7(2)	
O(3)-C(13)-C(14) $O(3)-C(13)-C(14)$ $O(4)-C(14)-N(1)$ $O(4)-C(14)-C(13)$	112.89(16) 109.89(16) 110.50(16) 122.7(2) 120.16(19)	
O(3)-C(13)-C(14) $O(3)-C(13)-C(14)$ $O(4)-C(14)-N(1)$ $O(4)-C(14)-C(13)$ $N(1)-C(14)-C(13)$	112.89(16) 109.89(16) 110.50(16) 122.7(2) 120.16(19) 117.11(17)	
O(3)-C(13)-C(14) $C(14)-C(13)-C(8)$ $O(4)-C(14)-N(1)$ $O(4)-C(14)-C(13)$ $N(1)-C(14)-C(13)$ $N(1)-C(15)-C(16)$	112.89(16) 109.89(16) 110.50(16) 122.7(2) 120.16(19) 117.11(17) 112.5(2)	
O(3)-C(13)-C(14) $C(14)-C(13)-C(8)$ $O(4)-C(14)-N(1)$ $O(4)-C(14)-C(13)$ $N(1)-C(14)-C(13)$ $N(1)-C(15)-C(16)$ $C(14)-N(1)-C(15)$	112.89(16) 109.89(16) 110.50(16) 122.7(2) 120.16(19) 117.11(17) 112.5(2) 122.57(19)	
O(3)-C(13)-C(14) $C(14)-C(13)-C(8)$ $O(4)-C(14)-N(1)$ $O(4)-C(14)-C(13)$ $N(1)-C(14)-C(13)$ $N(1)-C(15)-C(16)$ $C(14)-N(1)-C(15)$ $C(1)-O(2)-C(8)$	112.89(16) 109.89(16) 110.50(16) 122.7(2) 120.16(19) 117.11(17) 112.5(2) 122.57(19) 109.69(13)	

Table S2. Selected bond lengths (Å) and bond Angles (°) of compound $\mathbf{9a}$

Empirical formula	C ₁₈ H ₃₁ NO ₄
Formula weight	326
Temperature (K)	298(2)
Wavelength (Å)	0.71073
Crystal system	Triclinic
Space group	P -1
a (Å)	9.384(2)
b (Å)	10.484(2)
c (Â)	11.281(2)
α (°)	102.829(17)
β (°)	94.191(18)
γ (°)	113.456(18)
Volume (Å ³)	976.4(4)
Z	2
Density(Mg/m ³)	1.107
Crystal size (mm ³)	0.50×0.17×0.15
Absorption coefficient (mm ⁻¹)	0.077
θ range for data collection (°)	1.88 to 29.31
Index ranges	$-10 \le h \le 12$
	$-14 \le k \le 14$
	$-15 \le l \le 15$
Reflections collected	11380
Independent reflections	5246 [R _{int} = 0.0611]
Absorption correction	None
Max. and min. transmission	0.5263 and 0.2964
Refinement method	Full-matrix least-squares on F^2
Goodness-of-fit on F ²	1.127
Final R indices $[I > 2\sigma(I)]$	$R_1 = 0.0744, wR_2 = 0.1880$
R indices (all data)	$R_1 = 0.1106, wR_2 = 0.2092$
Largest diff neak and hole (e \hat{A}^{-3})	0.401 and -0.392
Surgest on peak and note (C.A.)	

Table S3: Crystal data and structure refinement for compound 9a

Figure S1. X-ray crystal structure of compound **9a**.

Figure S2. X-ray crystal structure of compound **9a**. The hydrogen atoms are omitted for the reason of clarity.