Conversion of carbohydrates to furfural via selective cleavage of

carbon-carbon bond: cooperative effect of zeolite and solvent

Jinglei Cui,^{ab} Jingjing Tan,^{ab} Tiansheng Deng,^a Xiaojing Cui,^a Yulei Zhu*^{ac} and

Yongwang Liac

^a State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, PR China. E-mail: zhuyulei@sxicc.ac.cn; Fax: +86-351-7560668.

^b University of Chinese Academy of Sciences, Beijing, 100049, PR China.

^c Synfuels China Co. Ltd., Beijing, PR China.

1. Materials

Cellulose, inulin, starch, sucrose, maltose, D-glucose, D-fructose, D-xylose, Darabinose, 5-hydromethylfurfural (HMF), formic acid (FA) and levulinic acid (LA) were purchased from Aladdin. γ -valerolactone (GVL), γ -butyrolactone (GBL), 1,4dioxane, gluconic acid, H₂SO₄ (98%), Amberlyst-15, AlCl₃ and γ -Al₂O₃ were purchased from Sinopharm Chemical Reagent Co., Ltd.. All the above agents were utilized without further purification. H β , HY, H-Mordenite and HZSM-5 zeolite were purchased from The Catalyst Plant of Nankai University.

2. Experiments

2.1 The computational formula

The conversion of sugars and the yield of the products were quantified according to the following equations:

$$\frac{mol \ of \ sugar(inlet) - mol \ of \ sugar(outlet)}{mol \ of \ sugar(inlet)} \times 100\%$$

$$\frac{mol \ of \ one \ product \ produced}{\frac{Wield = mol \ of \ theoretical \ product \ value}{\times 100\%}}$$

2.2 Procedures for the catalyst recycling

After the first run was completed, the reaction products were centrifuged for 10 min to separate the H β zeolite from the solutions. The H β zeolite was washed with GBL-water (5 wt%) thoroughly and dried at 100 °C for 12 h. Then the dried H β zeolite was used as the catalyst for the next run.

2.3 Procedures for the dealuminizing of zeolite

0.5 g H β zeolite was added in 50 ml HNO₃ (6 M) aqueous solution, refluxing for 4 h at 80 °C. Then the mixture was cooled and the H β zeolite was separated. The H β zeolite was washed for 5 times with water and then dried at 100 °C for 12 h. Then the dried zeolite was caclined in air at 550 °C for 4 h.

2.4 Procedures for preparing the samples for FTIR

The process of preparing samples for FTIR: 0.2 g zeolite (H β or HY) and 0.5 g sugar was added in 9.5 g water or 1,4-dioxane/water(9 g: 0.5 g) solvent. The mixture was stirred vigorously for 4 h at room temperature. The zeolite was separated and washed with the solvent for 2 times, and then dried for 6 h at room temperature.

3 Catalyst characterizations

3.1 X-ray diffraction (XRD) measurements

Powder X-ray diffraction (XRD) patterns were obtained on a D8 ADVANCE A25 X-ray diffractometer (Germany), with Cu K α radiation at 30 kV and 10 mA. The X-ray patterns were recorded in 2 θ values ranging from 5° to 80° with a scanning speed of 4 °/min.

3.2 Fourier transforms infrared spectroscopy (FTIR)

The FT-IR spectra were measured on a BRUKER TENSOR27 FTIR spectrophotometer (Bruker, Germany), equipped with a deuterium triglycine sulfate (DTGS) detector. The powder samples were mixed with KBr and pressed into translucent disks at room temperature. The spectra were recorded in the range of 400-4000 cm⁻¹.

3.3 IR spectra of adsorbed pyridine (Py-IR)

Py-IR was performed in Vertex 70 (Bruker) FT-IR spectrophotometer with a deuterium triglycine sulfate (DTGS) detector. For each run, the sample was pressed into self-supporting wafers and degassed in vacuum at 300 °C for 1 h followed by exposure to pyridine vapor. Subsequently, the Py-IR spectra were measured at 200 °C after applying vacuum for 30 min. The quantification of Brønsted and Lewis acid sites was estimated from the integrated area of adsorption bands at ca. 1540 and 1450 cm⁻¹, respectively.

3.4 NH₃-TPD of various zeolites

The acid amounts of zeolites were measured with thermal programmed desorption (TPD) of NH₃ on Auto Chem. II 2920 equipment (Micromeritics, USA) with a mass spectra. The sample was adsorbed with NH₃ until saturation. Then, the zeolite was flushed with helium at 100 °C for 0.5 h to remove the physisorbed NH₃. TPD was conducted from 100 °C to 800 °C at a heat rate of 10 °C / min.

3.5 Inductively coupled plasma optical emission spectrometry (ICP-OES)

The Si/Al of various zeolites was analyzed by PerkinElmer Optima 2100 DV.

3.6 Thermo-gravity (TG) experiments

Thermo-gravity (TG) experiments of used catalyst were performed on a Mettler Toledo TGA/SDTA 851 instrument (air atmosphere 50 ml/min and heating rate of 10

°C/min). Prior to the test, both the fresh reduced and used catalysts were dried in air at 100 °C for 24 h.

Figure S1 The heating rate (a) and cooling rate (b) of the reactions

Figure S2 The XRD patterns of (a) H β , (b) HY, (c) HZSM-5, (d) H-Mordenite

.

Figure S3 The FTIR spectra of (a) fresh H β , (b) H β spent for 1 run, (c) H β spent for 3 recycling runs

Figure S4 Thermo-gravity profile of recycled H β zeolite

Figure S5 The FTIR spectra of (a) $H\beta$, (b) $H\beta$ +arabinose+water

Entry	Cotolyat	Substrate	HCHO loss
Elluy	Catalyst	Substrate	ratio%
1 ^b	Нβ	Formaldehyde	5.6
2°	Ηβ	Formaldehyde + furfural	6.5
3 ^d	Ηβ	Formaldehyde + arabinose	30.8
4 ^d	-	Formaldehyde + fructose	49.1
5 ^d	-	Formaldehyde + glucose	43.6
^{a:} 0.1 g Hβ zec	olite, 10 g substrates a	and GBL-water mixture, water content 5 w	t%, 150 °C, 1 h; ^b : 0.1 g
formaldehyde;	: 0.1 g formaldehyde, 0	0.3 g furfural; d: 0.1 g formaldehyde, 0.5 g su	gar.

Table S1 The loss of formaldehyde in the reactions ^a

 	- F J -	r r r r r r r r r r r r r r r r r r r	, , , , , , , , , , , , , , , , , , ,
Catalyst	Si/Al ^a	Acid amount (mmol·g ⁻¹ catalyst) ^b	L acid /B acid mol ratio ^c
Нβ	25	0.366	3.02
HY	6	0.391	2.18
H-Mordenite	17	0.12	1.03
HZSM-5	32	0.134	0.63

 Table S2 The physicochemical properties of various zeolite catalysts

^a: the Si/Al of various zeolites was determined by ICP-OES; ^b: the acid amount was determined by NH₃-TPD characterization; ^c: the acid type was determined by pyridine adsorption FTIR characterization.

Entry	Substrate	T/ °C	Conversion%	Furfural yield %	
1	HMF	150	56.1	Not detected	
2	HMF	160	75.3	Not detected	
$^a:$ 0.1 g H\beta catalyst, 0.5 g HMF, 0.5 g water, 9 g GBL, reaction time 1 h, 2 MPa $N_2.$					

Table S3 The conversion of HMF in GBL-water ^a

Table S4 The yield of arabinose in the reactions ^a

Entry	substrate	T/ °C	t/ min	Arabinose yield %			
1	fructose	150	30	2.8			
2	glucose	150	60	2.7			
^a : 0.1g H	^a : 0.1g H β catalyst , 0.5 g substrate, 0.5 g water, 9 g GBL, 2 MPa N ₂ .						

Table S5 The conversion of arabinose in GBL-water over H β catalyst ^a

					1 5
Entry	Substrate	T/ °C	t/ h	Conversion%	Furfural yield %
1	arabinose	150	1	99.9	76.8
$^a:$ 0.1 g H β catalyst , 0.5 g arabinose, 0.5 g water, 9 g GBL, 2 MPa $N_2.$					

	I able S6	IR data for D-fruct			
D-fructose (cm ⁻¹)	Possible assignment	D-fructose (cm ⁻¹) Possible assignment		
3422	νО-Н	1079	νCO+δCC		
1633	δH_2O	1053	νCO		
1470	$\delta CH_2 + \delta OCH + \delta CCH$	978	νCO+δCCO		
1453	δОСН +δССН	921	vCO+δCCH+vasy (ring of fructose)		
1399	δΟCH+ δCOH+δCCH	867	$\nu CC {+} \delta CCH {+} \delta CH$ (ring of fructose)		
1342	δССН+ δСОН	817	δСН		
1179	δОСН +δССН	779	τCO+δCCO+δCCH		
1147	vCO+vCC+δCCC (pyranos	e) 701	δCCO+τCO+δOCO		
1095	vCO+vCC				
v: stretching vibration; δ : bending vibration ; τ : twisting vibration.					

Table S6IR data for D-fructose 1

I a	Table S7 The conversion of arabinose and xylose to furfulat over rip zeome "						
Entry	substrate	Solvent	conv. %	Furfural yield mol%	Others% c		
1	arabinose	water	42.7	12.1	4.5		
2	xylose	water	51.2	19.4	4.1		
3 ^b	arabinose	1,4-dioxane-water	97.1	60.5	2.3		
4 ^b	xylose	1,4-dioxane-water	99.7	73.2	3.1		
5 ^b	arabinose	GBL-water	99.9	76.8	6.5		
6 ^b	6 ^b xylose GBL-water 99.9 87.2 4.5						
a: 0.5 g H β zeolite, 0.5 g substrate, 9.5 g water, 150 °C, t=1 h; b: 0.5 g substrate, 0.5 g water, 9 g 1,4-dioxane or							
GBL, 0.	1g Hβ zeolite ; c:	formic acid, acetic acid and	propionic acid	l.			

Table S7 The conversion of arabinose and xylose to furfural over H β zeolite ^a

1 4010 0	o me companion	of fulfulur degradation in wat	er und GDE water		
Entry	Substrate	Solvent	Furfural loss ratio %		
1	Furfural	Water	25.2%		
2	Furfural	GBL-water (5 wt%)	1.5%		
a: 150 °C, 1 h, 0.1 g Hβ, 2 MPa N ₂ ; 3 wt% furfural solution 10 g.					

Table S8 The comparison of furfural degradation in water and GBL-water ^a

	•			-	-
Entry	Recycling runs	sugar	T/ºC	Conv.%	Furfural yield %
1	0	Fructose	150	99.8	63.5
2	1	Fructose	150	99.9	61.8
3	2	Fructose	150	99.9	59.5
4	3	Fructose	150	99.9	57.1
5 ^b	4	Fructose	150	99.9	62.1
6	0	Glucose	150	99.9	56.5
7	1	Glucose	150	99.9	54.1
8	2	Glucose	150	99.9	53.2
9	3	Glucose	150	99.9	48.9
10 ^b	4	Glucose	150	99.9	53.2

Table S9 The recycling of $H\beta$ zeolite for converting fructose and glucose^a

^a: 0.1 g H β catalyst; 10 g fructose or glucose/GBL-water solution for each run, water concentration 5 wt%, fructose or glucose concentration 5 wt%; reaction time: 1 h for fructose conversion, 2 h for glucose conversion, 2 MPa N₂; ^b: the H β zeolite after 3 recycling runs was calcined at 600 °C for 2 h(air atmosphere).

Table S10 The conversion of fructose/glucose mixture ^a

Entry	Substrate	Furfural yield %
1	0.146 mmol fructose + 0.146 mmol glucose	59.7%
a: 150 °C, 2 h, 0.1 g Hβ	; 10 g sugar GBL-water solution with water content 5 wt%.	

Entry	P/ MPa	T/ºC	Conv.%	Furfural yield %
1	0.1	150	99.8	59.6
2	1	150	99.9	62.8
3	1.5	150	99.9	63.9
4	2	150	99.9	63.5
5	2.5	150	99.9	62.1
	1 10 0	IGPT		0 1

Table S11The effect of pressure on the conversion of fructose into
furfural in GBL-watera

^a: 0.1 g H β catalyst; 10 g fructose e/GBL-water solution for each run, water concentration 5 wt%, fructose concentration 5 wt%; reaction time: 1 h for fructose conversion,

Notes and references

1. J. Y. Guo and X. M. Zhang, Carbohyd. Res., 2004, 339, 1421-1426.