Life cycle inventory and system boundary of biomass-to-chemical production

Input-output data pertaining to corn, wheat and rice production are displayed as tables A1, A2, A3 respectively. Details of sugarcane plantation and sugar milling, including the generation of bagasse, are compiled in Table A4. All CO₂ intake by crops during photosynthesis are allocated by mass to the respective agricultural residues.

Information for biotechnologies for biomass to formic acid and methanol production are contained in Tables B1 – B3. The LCA system boundary for rice straw to methanol or rice straw to bio-acetone is displayed in Fig. A; and for wheat straw to bio-formic acid or acetone, Fig. B.

Data relating to P and N fertilizers vs. Crop yield for corn, wheat, rice and sugarcane, are compiled in Table C.

Figure A. LCA system of rice cultivation and rice straw collection to produce: i) bio-methanol; or ii) acetone (via A-B-E process)

Figure B. LCA system of wheat plantation and wheat straw generation to produce: i) formic acid; or ii) acetone via (A-B-E)

Table A1. Input-output LCI data for corn stover ^a

Input (corn agriculture)					
Flow	Unit	Amount	Comments		
Carbon dioxide	kg	1.49	Photosynthesis during biomass growth		
Diesel, combusted in industrial equipment	I	6.86 x 10 ⁻³	Farm energy input		
Agrochemicals	kg	2.88 x 10 ⁻⁴	Pesticides consumption		
Phosphorous Fertilizer (P ₂ O ₅)	kg	5.84 x 10 ⁻³	Fertilizers		
Electricity	kWh	0.0122	Energy consumption		
Gasoline, combusted in farm equipment	I	1.88 x 10 ⁻³	For farm tractor		
Liquefied petroleum gas, combusted in industrial boiler	I	4.87 x 10 ⁻³	Energy consumption		
Natural gas, combusted in industrial boiler	m ³	3.05 x 10 ⁻³	Energy consumption		
Nitrogen fertilizer	kg	0.0169	Fertilizers		
Quicklime, at plant	kg	0.0305			
Water (total)	I	32.6	Water for irrigation		
		Output			
Flow	Unit	Amount	Comments		
Corn stover, at field	kg	1.00	62% collection for use as lignocellulose feedstock; the rest left on field to prevent soil erosion		
Corn	kg	1.00	For food		
N ₂ O	kg	5.26 x 10 ⁻⁴	Greenhouse gas		
NOx	kg	2.97 x 10 ⁻³	Contribution to acidification potential		
Particulates, unspecified	kg	3.45 x 10-7	Particulate emissions		
Hydrocarbons, unspecified	kg	1.73 x 10 ⁻⁴	Due to use of pesticides		
Nitrogen, total	kg	2.10 x 10 ⁻³	Runoff/leaching of fertilizers to water body		
Phosphorus compounds, unspecified	kg	3.80 x 10 ⁻⁵	Runoff/leaching of fertilizers to water body		
Suspended solids, unspecified	kg	0.822	Erosion leading to water pollution		

^aNREL, Crop production – corn farming, quantitative reference: corn stover at field, 2001.

Table A2. Input-output LCI data for wheat straw^b

Input (wheat agriculture)

Flow	Unit	Amount	Comments	
Carbon dioxide	kg	1.51	Photosynthesis during biomass growth	
Diesel, combusted in	I	0.0172	Farm energy input	
industrial equipment				
Agrochemicals	kg	1.71 x 10 ⁻⁴	Pesticides consumption	
Phosphorous Fertilizer (P ₂ O ₅)	kg	0.0103	Fertilizers	
Gasoline, combusted in farm equipment	I	3.90 x 10 ⁻³	For farm tractor	
Nitrogen fertilizer, production mix	kg	0.0285	Fertilizers	
Quicklime	kg	0.0187		
Water (total)	m ³	0.0595	Water for irrigation	
Output				
Flow	Unit	Amount	Comments	
Wheat straw, at field	kg	1.30	70% collection for use as lignocellulose feedstock; the rest left on field to prevent soil erosion	
Wheat grain	kg	1.00	For food	
N ₂ O	kg	8.37 x 10 ⁻⁴	Greenhouse gas	
NOx	kg	4.64 x 10 ⁻³	Contribution to acidification potential	
Particulates, unspecified	kg	1.22 x 10 ⁻⁶	Particulate emissions	
Hydrocarbons, unspecified	kg	1.03 x 10 ⁻⁴	Due to use of pesticides	
Nitrogen, total	kg	3.48 x 10 ⁻³	Runoff/leaching of fertilizers to water body	
Phosphate	kg	6.07 x 10 ⁻⁵	Runoff/leaching of fertilizers to water body	
Suspended solids, unspecified	kg	2.90	Erosion leading to water pollution	

^bNREL, Crop production – wheat farming, quantitative reference: wheat straw at field, 2000.

Table A3. Input-output LCI data for rice straw $^{\rm c}$

Input (rice agriculture)				
Flow	Unit	Amount	Comments	
Carbon dioxide	kg	1.27	Photosynthesis during biomass growth	
Diesel, combusted in	I	4.86 × 10 ⁻²	Farm energy input	

industria	equipment
-----------	-----------

Agrochemicals	kg	9.21 × 10 ⁻⁴	Pesticides consumption
Phosphorous Fertilizer (P ₂ O ₅)	kg	5.17 × 10 ⁻³	Fertilizers
Electricity	kWh	0.0501	Energy consumption
Liquefied petroleum gas, combusted in industrial boiler	I	2.83 × 10 ⁻³	Energy consumption
Natural gas, combusted in industrial boiler	m ³	5.37 × 10 ⁻³	Energy consumption
Nitrogen fertilizer	kg	2.38 × 10 ⁻²	Fertilizers
Quicklime, at plant	kg	6.89 × 10 ⁻³	
Water (total)	I	668.0	Water for irrigation

Output				
Flow	Unit	Amount	Comments	
Rice straw, at field	kg	1.22	75% collection for use as lignocellulose feedstock; the rest left on field to prevent soil erosion	
Rice grain, at field	kg	1	For food	
СО	kg	7.22 × 10 ⁻³	Greenhouse gas	
CH ₄	kg	0.0446	Greenhouse gas	
N ₂ O	kg	7.43×10^{-4}	Greenhouse gas	
NOx	kg	4.26 × 10 ⁻³	Contribution to acidification potential	
Ammonia	kg	1.43 × 10 ⁻³	Due to use of pesticides	
Hydrocarbons, unspecified	kg	5.53 × 10 ⁻⁴	Due to use of pesticides	
Nitrogen, total	kg	2.90 x 10 ⁻³	Runoff/leaching of fertilizers to water body	
Phosphorus compounds	kg	3.05 x 10 ⁻⁵	Runoff/leaching of fertilizers to water body	
Suspended solids	kg	1.07	Erosion leading to water pollution	
Copper ions	kg	2.41 x 10 ⁻⁶	Water pollution due to use of pesticides	

^cNREL, Crop production – rice farming, quantitative reference: rice straw at field, 2001.

Table A4. Input-output LCI data for bagasse^d

Input (sugarcane plantation)			
Flow	Unit	Amount	Comments
Carbon dioxide	kg	0.44	Photosynthesis during biomass growth (per kg sugarcane) ^e
Diesel	I	0.03	Farm energy input
Herbicide	kg	2.1 × 10 ⁻⁴	Pesticides consumption
Phosphorous Fertilizer (P ₂ O ₅)	kg	0.012	Fertilizers

Nitrogen fertilizer	kg	4.5 × 10 ⁻⁴	Fertilizers
Insecticide	kg	1.53 × 10 ⁻³	
Water (total)	m ³	0.042	Water for irrigation ^e
	0	utput (from sugarcar	ne plantation)
Flow	Unit	Unit Amount Comments	
Sugarcane	kg	8.3	Required per 1.66 kg (dry) bagasse at Mill
CH ₄ total	kg	2.77 × 10 ⁻⁴	Greenhouse gas due to traditional harvesting
N ₂ O total	kg	1.64 × 10 ⁻³	Greenhouse gas due to traditional harvesting
NOx	kg	3.71 × 10 ⁻³	Contribution to acidification potential
Particulates, unspecified	kg	3.20 × 10 ⁻⁵	Particulate emissions
Nitrate	g	7.03 × 10 ⁻⁵	Due to use of pesticides
Ammonium	g	2.2 × 10 ⁻⁴	
Ammonia	g	0.429	Due to volatization
		Input (Sugar	Mill)
Flow	Unit	Amount	Comments
Sugarcane	kg	8.3	From plantation
Steam	MJ	1.3	Energy input for milling process; operating
			temperature 260 – 300 °C, pressure 1.9 – 2.1
			MPa
		Output (Sugar	Mill)
Bagasse (dry)	kg	1.66	As input per kg methanol
Other by-products not			
taken into account			

^d Extracted from M.L.G. Renó et al., 20th International Congress on Mechanical Engineering, 2009.

^e Supplemented by Ecolnvent

Table B1. Input-output LCI data for biomass (stover) to formic acid

Input (stover)				
Flow	Unit	Amount	Comments	
Biomass	kg	1.7	Material input are all allocated by mass based on Biofine process ^f	
Water	kg	2.49	with additional information from Fitzpatrick ^g	
Sulphuric Acid	kg	-	Assume 100% recovery	
Biochar for steam generation	kg	0.35	Net amount; allocated by mass	

Output (formic acid)			
Formic Acid	kg	1	Functional unit
CO ₂	kg	1.08	Estimated based on composition of carbon, nitrogen and sulphur in
NOx	kg	0.03	biochar ^h (99% scrubber efficiency)

SO_2 kg 7.8×10^{-6}

 $_{\rm f}$ D.J. Hayes et al., Biorefineries – Industrial processes and Products, 2006.

^gS.W. Fitzpatrick, Commercialization of the Biofine technology for levulinic acid production from paper sludge, United States: US Department of Energy, 2002.

^hJ. Lehmann, S. Joseph, Biochar for Environmental Management: Science, Technology and Implementation, Taylor & Francis, 2015.

Table B2. Input-output LCI data for biomass (bagase) to methanol ⁱ

Input (bagasse)				
Flow	Unit	Amount	Comments	
Biomass	kg	1.66	Pre-treated, dry	
Steam	kg	2.3		
Electricity	MJ	0.38		
Output (Methanol)				
Bio-Methanol	kg	1	Functional unit	
со	kg	2.5 × 10 ⁻⁵		
CH₃OH (VOC)	kg	6.58 × 10 ⁻⁵		
HCN	kg	3.60 × 10 ⁻⁴	Fugitive emissions	
H ₂ S	kg	9.96 × 10⁻⁵		
NH ₃	kg	3.60 × 10 ⁻⁴		

ⁱ Extracted from M.L.G. Renó et al., 20th International Congress on Mechanical Engineering, 2009.

Table B3. Input-output LCI data for biomass (rice straw) to methanol ^j

Input (bagasse)					
Flow	Unit	Amount	Comments		
Biomass	kg	3.25	Pre-treated, dry		
Energy	MJ	0	Energy are provided by combustion of flue gas, hot/cold process fluid		
Output (Methanol)					
Methanol	kg	1	Functional unit		
CO ₂	kg	1.83			
СО	kg	1.12 × 10 ⁻³	Greenhouse gas		
CH ₄	kg	2.34 × 10 ⁻⁴			
NO _x	kg	9.28 × 10 ⁻⁴	Contribution to acidification potential		
SO ₂	kg	5.24 × 10 ⁻⁴			
PM ₁₀	kg	9.30 × 10 ⁻⁴	Dusts/particulates		

^j Extracted from J. Xiao et al., *Ind. Eng. Chem. Res.*, 48, 999, 2009.

Table C. N and P fertilizer input vs. Crop yield

Corn (kg/ha) ⁺			Wheat (kg/ha) $^{\alpha}$			Rice (kg/ha) $^{\beta}$			Sugarcane (kg/ha) $^{\delta}$		
Ν	Р	Yield	Ν	Р	Yield	N	Р	Yield	N	Р	Yield
44.6	45.7	6797	79.8	34.5	2846	200	51	6300	31	30	53936
46.6	48	6928	78.6	32.8	2213	157	50	5290	61	57	76640
45.8	47	6949	80.7	34.5	2539	160	48	6030	57	60	75310
47	48	7102	82.6	34.2	3145	196	58	7050	76	45	73557

⁺Extracted from S. Gul et al., *Scientifica*, 1, 2015.

 $^{\alpha}$ Extracted from R. Carew et al., J. Agri. & Applied Econs., 41, 625, 2009.

 $^{\beta}$ Extracted from J.Y. Jin et al., *Better Crops International*, 2002.

 $^{\delta}$ FAO, Fertilizer by Crop in Brazil, 2004.