## **Supporting Information for**

## Preparation of hydrophobic reduced graphene oxide supported Ni-B-P-O and Co-B-P-O catalysts and their high hydrodeoxygenation activities

Weiyan Wang,<sup>\* a,b</sup> Pengli Liu,<sup>a</sup> Kui Wu,<sup>a</sup> Song Tan,<sup>a</sup> Wensong Li,<sup>a</sup> and Yunquan Yang<sup>\* a,b</sup> <sup>a</sup> School of Chemical Engineering, Xiangtan University, Xiangtan, Hunan, 411105, PR China <sup>b</sup> National & Local United Engineering Research Centre for Chemical Process Simulation and Intensification, Xiangtan University, Xiangtan 411105, P. R. China

## **Experimental Details**

**Preparation of catalysts** The Ni(Co)-B-P-O unsupported catalyst is prepared by chemical reduction methods. NiCl<sub>2</sub> or CoCl<sub>2</sub> (5 mmol), NaH<sub>2</sub>PO<sub>2</sub> (30 mmol) were dissolved in 20 mL of ultra-pure water, and then placed into a 250 mL three-necked flask. 20 mL aqueous solution of NaBH<sub>4</sub> (30 mmol) was added dropwise to the three necked flask under vigorous stirring at 0 °C. After reaction for 1 h, the black precipitate was collected and washed with ultra-pure water and ethanol for several times, and finally dried under vacuum at 50 °C for 4 h. The resultant catalyst was marked as Ni-B-P-O or Co-B-P-O.

The graphene supported Ni(Co)-B-P-O catalyst were prepared by in situ reduction method. In a typical experiment, 20 mg graphene oxide (GO) was dispersed in 20 ml ultra-pure water under ultrasonic environment. NiCl<sub>2</sub> or CoCl<sub>2</sub> (5 mmol) and NaH<sub>2</sub>PO<sub>2</sub> (30 mmol) were added and dissolved into the above solution. Consequently, 20 mL solution containing 30 mmol NaBH<sub>4</sub> was added slowly at 0 °C under vigorous stirring. The reaction was proceeded for 10 h to ensure the reduction of GO to reduced grapheme oxide (RGO). The black solution was separated and washed with ultra-pure water and ethanol for several times, and then dried in vacuum at 50 °C for 4 h. The resultant catalyst was marked as Ni-B-P-O/RGO or Co-B-P-O/RGO.

**Catalyst characterization** The specific surface area was measured by a Quantachrome's NOVA-2100e Surface Area instrument by physisorption of nitrogen at -196 °C. The samples

were dehydrated at 150 °C using vaccum degassing for 12 h before experiments. X-ray diffraction (XRD) measurements were carried on a D/max2550 18KW Rotating anode X-Ray Diffractometer with monochromatic Cu K $\alpha$  radiation ( $\lambda$ = 1.5418Å) radiation at voltage and current of 40 kV and 300 mA. The 2 $\theta$  was scanned over the range of 5-90° at a rate of 10°/min. The scanning electronic microscopy (SEM) images of the catalysts were obtained on a JEOL JSM-6360 electron microscopy. The surface composition and surface electronic state were analyzed by X-ray Photoelectron Spectroscopy (XPS) using Kratos Axis Ultra DLD instrument at 160eV pass energy. Al K $\alpha$  radiation was used to excited photoelectrons. The binding energy value of each element was corrected using C<sub>1s</sub> = 284.6 eV as a reference. The XP spectra of each element was deconvoluted using a Gaussian-Lorentz curve-fitting program.

**Catalyst activity measurement** The HDO activity tests were carried out in a 100-mL sealed autoclave. The prepared catalyst (0.1 g) without any further treatment, p-cresol (4.8 g) and dodecane (28.5 g) were placed into the autoclave. Air in the autoclave was evacuated by pressurization-depressurization cycles with nitrogen and subsequently with hydrogen. The system was heated to 225 °C, then pressurized with hydrogen to 4.0 MPa and adjusted the stirring speed to 900 rpm. During the reaction, liquid samples were withdrawn from the reactor and analysed by Agilent 6890/5973N GC-MS and 7890 gas chromatography using a flame ionization detector with a 30 m AT-5 capillary column. To separate the reaction products, the temperature in the GC oven was heated to 200 °C to 85 °C with the ramp of 20 °C/min, held at 85 °C for 4.0 min, then heated to 200 °C at a rate of 20 °C/min and kept at 200 °C for 5.0 min. Duplicate or triplicate experiments were performed and the average of these tests was reported here. The errors for conversion values were typically within plus/minus 5.0 mol%. Deoxygenation degree (D. D., wt %) is defined as [1-oxygen content in the final organic compounds / total oxygen content in the initial material] × 100%. Carbon balance is better than 96  $\pm$  3 % in this work.



**Fig. S1** XP spectra of (a) Ni 2p, (b) Co 2p, (c) B 1s, (d) P 2p and (e) C 1s levels of Ni-B-P-O, Ni-B-P-O/RGO, Co-B-P-O and Co-B-P-O/RGO catalysts

Fig. S1 (a) presented three deconvolution peaks at 852.7–853.1 eV, 855.5–856.5 eV and 860.2–861.5 eV, matching to Ni<sup>0</sup>, Ni oxide and Ni hydroxide, respectively. Similarly as Ni 2p

level, Co in Co-B-P-O and Co-B-P-O/RGO catalysts existed in three forms, Co<sup>0</sup>, Co oxide and Co hydroxide. In comparison with the standard binding energies (BE) of Ni<sup>0</sup> (853.1 eV), Co<sup>0</sup> (778.0 eV), B<sup>0</sup> (187.1 eV) and P<sup>0</sup> (130.0 eV), the binding energy of Ni<sup>0</sup> or Co<sup>0</sup> and P<sup>0</sup> shifted negatively but the binding energy of B<sup>0</sup> changed positively in Ni-B-P-O and Co-B-P-O, indicating that B<sup>0</sup> donated part of its electrons to metallic Ni or Co and P<sup>0</sup> accepted electrons from these metals. The deconvoluted C 1s XPS spectrum (Figure S1e) of Ni-B-P-O/RGO and Co-B-P-O/RGO showed three fitted peaks at around 284.5, 285.5 and 288.8 eV, assigned to C-C/C-C, C-O(epoxy/hydroxyls) and O=C-OH functional groups, respectively. Compared with the C1s XPS spectrum of GO in previous studies, the peak at 287.6 to C=O was not observed, but there still presented some oxygen-containing groups, indicating that GO had been partially reduced by the BH<sub>4</sub><sup>-</sup> reduction treatment.



**Fig. S2** XP spectra of (a) Ni 2p, (b) B 1s and (c) P 2p levels of the used Ni-B-P-O and Ni-B-P-O/RGO catalysts



Fig. S3 SEM images of Ni-B-P-O, Co-B-P-O, Ni-B-P-O/RGO and Co-B-P-O/RGO

catalysts

 Table S1 Comparison of element valence state compositions of fresh and used Ni-B-P-O

| Catalysts          | Ni (%)          |                  | B (%)          |                 | P (%)          |                 |
|--------------------|-----------------|------------------|----------------|-----------------|----------------|-----------------|
|                    | Ni <sup>0</sup> | Ni <sup>2+</sup> | B <sup>0</sup> | B <sup>3+</sup> | P <sup>0</sup> | P <sup>n+</sup> |
| Ni-B-P-O           | 46.8            | 53.2             | 33.9           | 66. 1           | 36. 4          | 63.6            |
| Ni-B-P-O-Used      | 35.7            | 64.3             | 62.4           | 37.6            | 51.3           | 48.7            |
| Ni-B-P-O/RGO-Fresh | 22.8            | 77.2             | 15.2           | 84.8            | 11.6           | 88.4            |
| Ni-B-P-O/RGO-Used  | 22.6            | 77.4             | 15.5           | 84.5            | 11.9           | 88.1            |

and Ni-B-P-O/RGO catalysts

| Ratio | Ni-B-P-O- | Ni-B-P-O- | Ni-B-P-O/RGO- | Ni-B-P-O/RGO- |
|-------|-----------|-----------|---------------|---------------|
|       | Fresh     | Used      | Fresh         | Used          |
| P:Ni  | 0.53      | 0.30      | 0.67          | 0.71          |
| B:Ni  | 1.05      | 0.69      | 1.54          | 1.56          |
| O:Ni  | 1.65      | 1.39      | 2.49          | 2.27          |

Table S2. Comparison of atomic ratios on the surface of fresh and used Ni-B-P-O and Ni-B-

P-O/RGO catalysts