

Supplementary Information

The hydroformylation-acetalization of styrene with glycerol was performed under the appointed conditions as indicated in S. Scheme 1 for two times. The combined mixture was purified by column chromatography on silica gel with the eluent of petroleum ether/ ethyl acetate (10:1~4:1). Since besides of the left glycerol, the oxoproducts is composed of (linear and branched) phenylpropanals (**a** and **b**) and the corresponding five-member-/six-member-ring acetals (**c-f**) with very similar polarity, it is very difficult to isolate every product. With our best effort, only the mixed acetalized products of **e** ((2-phenethyl-1,3-dioxolan-4-yl)methanol) and **f** (2-phenethyl-1,3-dioxan-5-ol) was obtained in the low yield. ¹H NMR (δ , ppm, CDCl₃) for **f**: 7.19-7.14 (5H, m), 4.51-4.49 (1H, t), 4.17-4.08 (2H, m), 4.00-3.97 (3H,m), 3.48-

S. Scheme 1 The hydroformylation-acetalization of styrene with glycerol [Reaction conditions:
Rh(acac)(CO)₂ 0.01 mmol, olefin 20 mmol (S/C=2000), L2 0.06 mmol (P/Rh=6:1), CO/H₂ (1:1)
4.0 MPa, temperature 120 °C, glycerol 5 mL, reaction time 2 h.]

The investigation on the effect of I⁻ (TABI, tetrabutylammonium iodide) on the performance of L1, L3, and L4 was supplemented in S. Table 1. It was shown that the involved I⁻ had no effect on the reaction results.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
	L1		L2		L3		L4	
Entry	Ligand	TABI	Conv.	S _{oxo}	Pacetals	$\mathbf{S}_{\text{iso-octenes}}$	L/B ^d	TON _{oxo} ^e
		(mmol)	(%) ^b	(%) ^{b,c}	(%) ^{b,c}	(%) ^{b,c}		
1	L2		91	94	62	6	1.9	1710
2	L1	0.015	65	88	2	12	2.1	1140
3	L3	0.015	86	90	27	10	2.4	1550
4	L4	0.015	76	88	2	12	1.9	1350

S. Table 1 The effect of I⁻ on homogeneous hydroformylation-acetalization with the presence of different ligands ^a

^a Rh(acac)(CO)₂ 0.0025 mmol, 1-octene 5.0 mmol (S/C=2000, Rh 0.05 mol%), P/Rh=6:1 molar ratio (L1 or L3 0.0075 mmol; L2 or L4 0.015 mmol), CO/H₂ (1:1) 4.0 MPa, MeOH 3 mL, 80 °C, reaction time 6 h; ^b Determined by GC; ^c S_{oxo}=(aldehydes+acetals)/(aldehydes+acetals+iso-octenes), P_{acetals} =acetals/(aldehydes+acetals), percentage of acetals in the total oxo-products; S_{iso-octenes}=iso-octenes/(aldehydes+acetals+iso-octenes); ^d L/B, the ratio of linear nonanals and acetals to branched nonanals and acetals; ^e TON_{oxo} (turnover number)=mol of oxo products·(mol of Rh)^{-l}.