Electronic Supplementary Information

Reduction of lignin color via one-step UV irradiation

Jingyu Wang, Yonghong Deng, Yong Qian,* Xueqing Qiu * and Dongjie Yang School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, People's Republic of China. E-mail: qianyong86@163.com; xueqingqiu66@163.com.

1 Calculation of the contents of lignin's functional groups

1.1 Phenolic hydroxyl groups

The content of phenolic hydroxyl group was measured by Folin-Ciocalteu (FC) method. Calibration experiment was conducted with vanillin solutions. A vanillin-free sample was used as the reference. A standard calibration curve was obtained:

$$A = 11.38889c + 0.02754$$

(1)

(2)

where A represents the absorbance of sample at 760 nm; c represents the concentration of phenolic hydroxyl group (mmol/L). The regression coefficient $R^2 = 0.997$.

Content of phenolic hydroxyl group was calculated by equation (1) and (2):

$$C_{PhOH} = c \times 25 / (1000 \times m_s)$$

where m_s represents the mass of sample, and C_{PhOH} represents the content of phenolic hydroxyl.

Samples	А	c (mmol/L)	$m_{s}\left(g ight)$	C _{PhOH} (mmol/g)
LCAL 1	0.4757	0.03935	0.0005968	1.648
LCAL 2	0.4953	0.04107	0.0005968	1.720
LCAL 3	0.4811	0.03982	0.0005968	1.668
Average of LCAL	/	/	/	1.679 ± 0.037
AL 1	0.7642	0.06468	0.0005924	2.730
AL 2	0.8296	0.07042	0.0005924	2.972
AL 3	0.7896	0.06691	0.0005924	2.824
Average of AL	/	/	/	2.842 ± 0.154

Table S1. The related data of content calculation of phenolic hydroxyl group.

1.2 Methoxyl group

The content of the methoxyl group of lignin was determined by headspace gas chromatographic. According to the HS-GC measurement on pure methyl iodide, a standard calibration curve was obtained:

$$S = 320184V + 79154$$
(1)

where V represents the volume of methyl iodide and S represents the GC signal count of methyl iodide. The regression coefficient $R^2 = 0.999$.

Content of methoxyl was calculated by equation (1) and (2):

$$C_{OMe} = V \times \rho / (M \times m_s)$$
⁽²⁾

where ρ and M are the density and the molar mass of iodine methane, respectively; m_s represents

the mass o	f lignin s	sample and	Come represents	the content	of methoxyl.
	0	F	- ONL - F		

Samples	S	V (uL)	$m_{s}\left(g ight)$	C (mmol/g)
LCAL 1	746710	2.08491	0.01078	3.105
LCAL 2	704607	1.95341	0.01026	3.057
LCAL 3	788782	2.21631	0.01006	3.537
Average of LCAL	/	/	/	3.081 ± 0.024
AL 1	1330053	3.90681	0.01031	6.084
AL 2	1069702	3.09368	001006	4.938
AL 3	1084840	3.14096	0.01004	5.023
Average of AL	/	/	/	4.980 ± 0.043

Table S2. The related data of content calculation of methoxyl.

1.3 Carboxyl group

The content of the carboxyl group of lignin was determined by aqueous titration. Typical diagrammatic curve of lignin by aqueous titration is shown as following:

Fig. S1 Diagrammatic curve of sample by aqueous titration.

The content of the carboxyl group can be calculated according to following equation:

$$C_{COOH} = \frac{\left[\left(V_{3}^{'} - V_{2}^{'}\right) - \left(V_{3} - V_{2}\right)\right]C_{HCl}}{m_{s}}$$

where V_2 and V_3 represent the corresponding HCI volumes of endpoint 2 and 3 in control titration; V'₂, and V'₃ represent the corresponding HCI volumes of endpoint 2 and 3 in sample titration; C_{HCl} and m_s are the concentration of HCl aqueous solution and the mass of lignin respectively. C_{COOH} represents the content of carboxyl.

Samples	V ₂ /V ₂ ' (mL)	V ₃ /V ₃ '(mL)	$m_{s}\left(g ight)$	C (mmol/g)
Blank 1	4.7536	8.1139	/	/
Blank 2	4.7669	8.0982	/	/
Blank 3	4.7700	8.1249	/	/
Average of blank	4.7635	8.1123	/	/
LCAL 1	4.1584	7.9344	0.01480	3.210
LCAL 2	4.0036	7.8763	0.01467	3.971
LCAL 3	4.0044	7.9472	0.01467	4.502
Average of LCAL samples	/	/	/	3.895 ± 0.650
AL 1	4.3826	8.0612	0.01440	2.547
AL 2	4.3940	8.0510	0.01427	2.402
Average of AL	/	/	/	2.475 ± 0.103

Table S3. The related data of content calculation of carboxyl.

Fig. S2 Photos of AL/DMF solution before (right) and after (left) UV irradiation, the concentration of AL in DMF was 0.5 g/L.

Fig. S3 AFM images of AL and LCAL.