Iron-containing N-doped carbon electrocatalysts for the cogeneration of hydroxylamine and electricity in a NO-H₂ fuel cell.

Nick Daems, Xia Sheng, Yolanda Alvarez-Gallego, Ivo F.J. Vankelecom and Paolo P. Pescarmona

Supporting information

Figure S1. N₂ adsorption isotherm and pore size distribution (inset) of Fe-PANI-AC-2.

Figure S2. Deconvoluted N 1s XPS spectra of (A) Fe-PANI-AC-1 400°C, (B) Fe-PANI-AC -1 (700°C) and (C) Fe-PANI-AC-2 (900°C).

Figure S3. Deconvoluted O 1s XPS spectra of (A) Fe-PANI-AC-1 and (B) Fe-PANI-AC-2.

Sample	Fe-O (530.0 eV)	C-O (531.5 eV)	C=O (532.6 eV)	O-C=O (533.8 eV)
Fe-PANI-AC-1	2.1%	72%	18%	7.6%
Fe-PANI-AC-2	3.7%	51%	30%	15%

Table S1. O configurations in the Fe-PANI-AC materials.

Table S2. Relative abundance of iron species in Fe-PANI-AC-1 and -2, as determined by analysis of the negative secondary ions by ToF-SIMS.

	Fe-PANI-AC-1	Fe-PANI-AC-2
FeNC ⁻	2.8%	2.6%
FeO ₂ -	5.7%	14%
FeO ₂ H ⁻	2.6%	6.7%
FeNC ₂ -	1.6%	1.1%
FeN ₂ C ⁻	3.9%	9.6%
FeO ₃ -	4.6%	12%
FeO₃H ⁻	3.5%	10%
FeNC ₃	17%	7.0%
FeN ₂ C ₂ -	15%	5.1%
FeN₃C⁻	0.8%	0.5%
FeN ₂ C ₃ -	3.5%	4.8%
FeN ₃ C ₂ ⁻	2.0%	1.5%
FeN₄C ⁻	0.9%	0.4%
FeN ₂ C ₄ -	4.3%	2.1%
FeN₃C₃⁻	7.6%	1.5%
FeN ₄ C ₂ -	2.7%	8.7%
FeN ₂ C ₅ -	2.5%	1.8%
FeN ₃ C ₄ -	2.2%	1.4%
FeN ₄ C ₃ -	0.5%	0.5%
FeN ₂ C ₆ -	1.8%	1.2%
FeN₃C₅ ⁻	3.9%	1.4%
FeN ₄ C ₄ -	0.9%	0.3%
FeN₃C ₆ -	1.8%	0.9%
FeN₄C₅⁻	0.5%	0.3%
FeN ₃ C ₇ ⁻	1.2%	0.3%
FeN ₄ C ₆ -	1.0%	0.3%
FeN ₃ C ₈ -	1.3%	0.5%
FeN₄C7⁻	0.7%	1.6%
FeN₃C9 ⁻	0.8%	0.2%
FeN₄C ₈ -	0.8%	0.3%
FeN ₄ C ₉ -	0.1%	0.1%
FeN ₄ C ₁₀	0.6%	0.1%
FeN ₄ C ₁₁	0.3%	0.2%
FeN ₄ C ₁₂	0.4%	0.5%