Ligand-free Pd Catalyzed Cross-coupling Reactions in Aqueous Hydrotropic Medium

Sanjay N. Jadhav^a, Arjun S. Kumbhar^a, Chadrashekhar V. Rode^b, Rajashri S. Salunkhe^{a*}

^aDepartment of Chemistry, Shivaji University, Kolhapur, 416004, M.S., India ^bCSIR-National Chemical Laboratory, Pune-411008, M. S. India E-mail: rss234@rediffmail.com

*Corresponding Author Tel. +91 231 260 9165; fax: +91 231 269 2333.

Supporting Information

Figure 5. Screening and optimization of various hydrotropic concentrations in Suzuki– Miyaura cross-coupling reaction^a

Entry	Conc.	NaXS		NaPTS		NaCS		NaS	
	(w/v %)	Time	Yield ^b	Time	Yield ^b	Time	Yield ^b	Time	Yield ^b
		(h)	(%)	(h)	(%)	(h)	(%)	(h)	(%)
1	10	24	45	20	10	24	10	20	5
2	20	19	60	20	15	25	15	16	10
3	30	7	93	24	20	21	20	15	10
4	40	5	92	20	40	24	35	24	15
5	50	4	92	21	60	20	60	24	15
6	60	2	93	14	70	24	80	24	15
7	70	2.5	93	12	80	24	60	24	15
8	80	6	90	12	60	24	60	24	15

^aReaction conditions: 4-bromobenzophenone (1.0 mmol), phenylboronic acid (1.1 mmol), Pd/C (2 mol %), K₂CO₃ (2.0 mmol), aq. hydrotropic solution (5.0 mL), at ambient temperature under air. ^bIsolated yields after column chromatography.

Experimental section

Instrumentation and chemicals

All the reagents were commercially sourced from Sigma Aldrich and Spectrochem chemical companies and used as received. Solvents were dried and purified by slandered methods. 10 % Pd/C, was obtained from Sigma Aldrich and used without any pretreatment.

Sodium *p*-Toluene Sulphonate (NaPTS), Sodium Xylene Sulphonate (NaXS), Sodium Cumene Sulphonate (NaCS) and Sodium Salicylate (NaS) were obtained from commercially available source. ¹H NMR and ¹³C NMR spectra were recorded on Bruker Avon 300 MHz and 75 MHz spectrometer using CDCl₃ as solvent and TMS as internal reference. Mass spectra were recorded on a Shimadzu QP2010 GCMS instrument. A JEOL (Tokyo, Japan) JSM-5200 scanning electron microscope was used for SEM observations and Energy dispersive X-ray spectroscopy (EDS) analysis. Elemental analysis was carried on EURO EA 3000 elemental analyzer. XPS of palladium was recorded on UG Multilab 2000-Thermo Scientific USA, Ka. A SDT Q600 V20.9 Build 20 was used for TGA-DTA analysis. Powder XRD patterns were collected on the Philips, PW 3710, Almelo, Holland diffractometer in the 20 range 5-60° with the step size of 0.02° using CuKa radiation (λ =1.5406 Å). The surface area analysis was carried out by using BET analyzer Quantachrome 1000e.

Typical experimental procedure for the Suzuki-Miyaura cross-coupling reactions of aryl halide, arenediazonium salt and acyl chloride with boronic acid

Aryl halide (1 mmol) or arenediazonium salt (1 mmol) or acyl chloride (1 mmol) and boronic acid (1 mmol) were added to round bottom flask containing 60 % aqueous solution of NaXS (5 mL) and stirred vigorously at room temperature (28 °C) for 5 min to become homogeneous solution. The Pd/C (2 mol %) and K_2CO_3 (2 mmol) were added to reaction mixture and allowed to stir until completion of the reaction as monitored by TLC. The resulting reaction was extracted with diethyl ether (3×10 mL). The combined organic layer was dried over anhydrous Na₂SO₄ and the removal of solvent afford crude product which was purified by column chromatography.

Typical experimental procedure for the Heck-Matsuda cross-coupling reaction

Arenediazonium tetrafluoroborate salt (1 mmol) and olefin (1 mmol) was added to a round bottom flask containing 60 % aqueous NaXS solution (5 mL). The reaction mixture was stirred at room temperature (28 °C). The Pd/C (2 mol %) was added and allowed to stir until completion of the reaction as monitored by TLC. Further workup for pure product is as above.

Spectral data of compounds

4-Phenyl benzophenone (Table 2, entry 1):

White solid. ¹H NMR (CDCl₃, 300 MHz): $\delta_{\rm H}$ (ppm), 7.37–7.41 (m, 1H), 7.45-7.53 (m, 4H), 7.57-7.64 (m, 1H), 7.65–7.71 (m, 4H), 7.82-7.91 (m, 4H). ¹³C NMR (CDCl₃,75 MHz): $\delta_{\rm C}$ (ppm), 126.8, 127.2, 128.0, 128.2, 128.9, 129.9, 130.6, 132.1, 136.2, 137.8, 140.0, 145.1, 196.1.

(4-(Naphthalen-1-yl)phenyl)(phenyl)methanone (Table 2, entry 2):

White solid. ¹H NMR (CDCl₃, 300 MHz): $\delta_{\rm H}$ (ppm) 7.47-7.66 (m, 9H) 7.91-7.99 (m, 7H), ¹³C NMR (CDCl₃, 75 MHz) $\delta_{\rm C}$ (ppm) 125.3, 125.5, 126.0, 126.3, 126.9, 128.3, 128.4, 130.0, 130.0, 130.1, 131.2, 132.4, 133.8, 136.4, 137.7, 139.1, 196.4. GCMS, $C_{22}H_{16}O$ [M+1]⁺: 309.13.

(4'-Fluorobiphenyl-4-yl)(phenyl)methanone (Table 2, entry 3):

White solid, ¹H NMR (CDCl₃, 300 MHz): $\delta_{\rm H}$ (ppm) 7.16-7.22 (m, 2H), 7.50–7.61 (m, 4H), 7.62 (m, 1H), 7.67 (dd, 2H, *J*= 6.6, 1.8 Hz), 7.84-7.86 (m, 2H), 7.91 (dd, 2H, *J*=6.4, 1.5 Hz). ¹³C NMR (CDCl₃,75 MHz): $\delta_{\rm C}$ (ppm) 115.7, 116.0, 126.8, 128.3, 128.8, 129.0, 129.9, 130.7, 132.4, 136.0, 136.2, 137.7, 144.1, 196.2. GCMS C₁₉H₁₃OF [M]:276.

4-Acetyl biphenyl (Table 2, entry 5):

White solid. ¹H NMR: (CDCl₃, 300 MHz): $\delta_{\rm H}$ (ppm) 2.66 (s, 3H), 7.44-7.52 (m, 3H), 7.65 (dd, 2H, *J*=7.0, 1.8 Hz), 7.70 (dd, 2H, *J*= 6.7, 1.88 Hz), 8.05 (dd, 2H, *J*= 6.6, 1.8 Hz). ¹³C NMR (CDCl₃, 75 MHz): $\delta_{\rm C}$ (ppm) 26.6, 127.2, 127.2, 128.2, 128.9, 128.9, 135.8, 139.8, 145.8, 197.7. GCMS C₁₄H₁₂O [M]:196.

1-(4-(Naphthalen-1-yl)phenyl)ethanone (Table 2, entry 6):

White solid, ¹H NMR: (CDCl₃, 300 MHz): $\delta_{\rm H}$ (ppm) 2.71 (s, 3H), 7.46-7.59 (m, 4H), 7.63 (dd, 2H, *J*=6.6, 1.8 Hz), 7.84 (d, 1H, *J*=8.4 Hz), 7.96 (*t*, 2H, *J*= 1.2 Hz), 8.11 (dd, 2H, *J*= 6.6, 1.8 Hz). ¹³C NMR (CDCl₃, 75 MHz): $\delta_{\rm C}$ (ppm) 26.6, 125.3, 125.5, 126.0, 126.3, 126.9, 128.3, 128.4, 130.3, 131.2, 133.8, 136.8, 139.0, 145.8, 197.8. GCMS C₁₈H₁₄O [M]:246.

4-(naphthalen-5-yl)benzaldehyde (Table 2, entry 8):

White solid, ¹H NMR: (CDCl₃, 300 MHz): $\delta_{\rm H}$ (ppm) 7.42-7.57 (m, 4H), 7.69 (d, 2H, *J*=8.4 Hz), 7.84 (d, 1H, *J*=8.4 Hz), 7.89-7.93 (m, 2H), 8.02 (dd, 2H, *J*= 6.6, 1.8 Hz), 10.13 (s, 1H). ¹³C NMR (CDCl₃, 75 MHz): $\delta_{\rm C}$ (ppm) 125.2, 125.4, 126.0, 126.4, 126.8, 128.4, 128.5, 129.6, 130.7, 131.1, 133.8, 135.4, 138.8, 147.1, 191.1.

2,6-Diphenylpyridine (Table 2, entry 10):

White solid. ¹H NMR (CDCl₃, 300 MHz): $\delta_{\rm H}$ (ppm) 13 7.43–7.55 (m, 6H), 7.72 (d, 2H, *J*= 7.5 Hz), 7.81-7.87 (m, 1H), 8.17 (s, 2H), 8.19 (s, 2H). ¹³C NMR (CDCl₃, 75 MHz): $\delta_{\rm C}$ (ppm) 13 118.6, 126.9, 128.6, 128.9, 137.4, 139.5, 156.8.

1-Phenyl-9*H*-fluorene (Table 2, entry 17):

White solid. ¹H NMR (CDCl₃, 300 MHz): $\delta_{\rm H}$ (ppm) 3.99 (s, 2H), 7.33-7.50 (m, 5H), 7.57-7.70 (m, 4H), 7.80-7.88 (m, 2H). ¹³C NMR (CDCl₃,75 MHz): $\delta_{\rm C}$ (ppm) 37.0, 119.9, 120.1,

123.8, 125.0, 126.0, 126.7, 126.8, 127.1, 127.1, 128.7, 139.8, 141.5, 143.4, 143.8. GCMS C₁₉H₁₄[M]:242.

4-Nitro-1,1'-biphenyl (Table 4, entry 5):

Light yellow solid. ¹HNMR (CDCl₃, 300 MHz): $\delta_{\rm H}$ (ppm) 7.46-7.55(m, 3H), 7.63-7.66 (m, 2H), 7.75 (dd, 2H, J = 7.0, 1.8 Hz), 8.32 (dd, 2H, J=8.1, 1.2 Hz). ¹³CNMR (CDCl₃, 75 MHz): $\delta_{\rm C}$ (ppm) 124.1, 127.3, 127.8, 128.9, 129.1, 138.7, 147.6.

1-(4-Nitrophenyl)naphthalene (Table 4, entry 7):

White solid. ¹HNMR (CDCl₃, 300 MHz), $\delta_{\rm H}$ (ppm) 7.44-7.53 (m, 2H), 7.54-7.61 (m, 2H), 7.69 (d, 2H, *J*=9.0 Hz), 7.96 (d, 2H, *J*=8.1 Hz), 8.38 (dd, 2H, *J*=8.7, 1.5 Hz). ¹³CNMR (CDCl₃, 75 MHz): $\delta_{\rm C}$ (ppm) 123.6, 125.1, 125.3, 126.2, 126.7, 127.1, 128.5, 128.9, 130.9, 133.8, 137.7, 147.2, 147.6. GCMS C₁₆H₁₁NO₂ [M]:249.

4-Methoxybiphenyl (Table 4, entry 8):

White solid. ¹HNMR (CDCl₃, 300 MHz), $\delta_{\rm H}$ (ppm) 3.87 (s, 3H), 7.00 (d, 2H, *J*=8.7 Hz), 7.32-7.35 (m, 1H), 7.43 (t, 2H, J=6.9Hz), 7.53-7.59 (m, 4H). ¹³CNMR (CDCl₃, 75 MHz): $\delta_{\rm C}$ (ppm) 55.7, 114.2, 126.7, 128.1, 128.6, 133.9, 141.08, 159.2.

1-(4-Methoxyphenyl)naphthalene (Table 4, entry 9):

White solid. ¹HNMR (CDCl₃, 300 MHz), $\delta_{\rm H}$ (ppm) 3.92 (s, 3H), 7.05 (d, 2H, *J*=8.1Hz), 7.41-7.47 (m, 4H), 7.50-7.55 (m, 2H), 7.86 (d, 1H, *J*=8.1 Hz), 7.93 (t, 2H, *J*=7.5 Hz). ¹³CNMR (CDCl₃, 75 MHz): $\delta_{\rm C}$ (ppm) 55.3, 113.7, 125.3, 125.8, 126.0, 126.8, 127.3, 128.2, 131.0, 158.0. GCMS C₁₇H₁₄O [M]:234.

(Naphthalen-1-yl)(phenyl)methanone (Table 6, entry 3):

Low melting solid. ¹H NMR (CDCl₃, 300 MHz) $\delta_{\rm H}$ (ppm): 7.45-7.56 (m, 4H), 7.60 (d, 2H, *J*= 6.9 Hz), 7.89 (d, 2H, *J*=7.5 Hz), 7.93-7.96 (m, 1H), 8.03 (d, 1H, *J*=8.1Hz), 8.12 (d, 1H, *J*= 9Hz). ¹³C NMR (CDCl₃), 75 MHz) $\delta_{\rm C}$ (ppm) 124.3, 125.7, 126.4, 127.2, 127.7, 128.3, 128.4, 130.3, 130.9, 131.2, 133.1, 133.7, 136.4, 138.3, 197.9.

(Naphthalen-3yl)(4-nitrophenyl)methanone (Table 6, entry 6):

Low melting solid. ¹H NMR (CDCl₃, 300 MHz) $\delta_{\rm H}$ (ppm): 7.53-7.61 (m, 4H), 7.96-7.99 (m, 1H), 8.02 (dd, 2H, *J*=6.9, 6.9 Hz), 8.10 (d, 1H, *J*=7.8 Hz),8.17-8.20 (m, 1H), 8.33 (dd, 2H, *J*=2.1, 2.1 Hz). ¹³C NMR (CDCl₃), 75 MHz) $\delta_{\rm C}$ (ppm) 123.6, 124.2, 125.3, 126.8, 127.9, 128.6, 130.8, 131.1, 132.6, 133.8, 134.7, 143.3, 150.3, 196.2. GCMS C₁₇H₁₁NO₃ [M]=277.

(E)-Methyl-3-(4-nitrophenyl)acrylate (Table 8, entry 1):

Yellow colored liquid, ¹HNMR (CDCl₃, 300 MHz) $\delta_{\rm H}$ (ppm) 3.86 (s, 3H), 6.58 (d, 1H, *J*= 16.2 Hz), 7.68 (d, 2H), 7.74 (d, 1H, *J*=16.2 Hz), 8.27 (d, 2H, *J*=8.7 Hz,).¹³CNMR (75MHz, CDCl₃): $\delta_{\rm C}$ (ppm) 52.08, 122.0, 124.1, 128.6, 140.4, 141.9, 148.5, 166.4. GCMS C₁₀H₉NO₄ [M]= 207.

(E)-Methyl cinnamate (Table 8, entry 2):

Low melting white solid. ¹H NMR (CDCl₃, 300 MHz); $\delta_{\rm H}$ (ppm) 3.82 (s, 3H), 6.46 (d, 1H, *J*=15.9 Hz), 7.39 (t, 3H, *J*=3.3 Hz), 7.52-7.55 (m, 2H), 7.71 (d, 1H, *J*=15.9 Hz). ¹³CNMR (75MHz, CDCl₃): $\delta_{\rm C}$ (ppm), 55.3, 120.8, 128.0, 128.8, 137.9, 138.7, 142.9, 166.5 ppm.

(E)-Methyl-3-p-tolylacrylate (Table 8, entry 3):

Yellow liquid. ¹HNMR (CDCl₃, 300 MHz) $\delta_{\rm H}$ (ppm), 2.39 (s, 2H), 3.82 (s, 3H), 6.41 (d, 1H, *J*= 15.9 Hz), 7.21 (d, 2H, *J*=7.8 Hz), 7.33-7.45 (m, 2H), 7.69 (d, 1H, *J*=16.2 Hz). ¹³CNMR (75MHz, CDCl₃): $\delta_{\rm C}$ (ppm), 21.4, 51.6, 128.0, 128.5, 128.6, 129.6, 130.0, 131.6, 140.7, 167.6 ppm.

(E)-Methyl-3-(4-metoxyphenyl)acrylate (Table 8, entry 5):

White solid. ¹HNMR (CDCl₃, 300 MHz) $\delta_{\rm H}$ (ppm) 3.80 (s, 3H), 3.85 (s, 3H), 6.32 (d, 1H, *J*= 16.2 Hz), 6.92 (d, 2H, *J*=8.7 Hz), 7.49 (d, 2H, *J*=8.7 Hz), 7.66 (d, 1H, *J*=15.9 Hz).¹³CNMR (75MHz, CDCl₃): $\delta_{\rm C}$ (ppm) 51.5, 55.3, 114.3, 115.2, 127.1, 129.7, 144.5, 161.4, 167.7. GCMS C₁₁H₁₂O₃[M]= 192.

(E)-Butyl-3-(4-nitrophenyl)acrylate (Table 8, entry 6):

Yellow colored solid, ¹HNMR (CDCl₃, 300 MHz) $\delta_{\rm H}$ (ppm) 0.98 (t, 3H, *J*=7.3Hz,), 1.41-1.49 (m, 2H), 1.66-1.76 (m, 2H), 4.24 (t, 2H, *J*=6.6 Hz), 6.57 (d, 1H, *J*= 16.2 Hz), 7.68 (d, 2H, J=8.7 Hz), 7.71 (d, 1H, *J*= 15.9 Hz), 8.26 (d, 2H, *J*=8.7 Hz), ¹³CNMR (75MHz, CDCl₃): $\delta_{\rm C}$ (ppm) 13.7, 19.1, 30.6, 64.9, 122.6, 124.1, 128.6, 140.6, 141.5, 166.1. GCMS C₁₃H₁₅NO₄ [M]=249.

(E)-Butyl-3-(4-chlorophenyl)acrylate (Table 8, entry 8):

Yellow colored liquid, ¹HNMR (CDCl₃, 300 MHz) $\delta_{\rm H}$ (ppm) 0.97 (t, *J*=7.5Hz, 3H), 1.38-1.50 (m, 2H), 1.65-1.74 (m, 2H), 4.22 (t, *J*=6.9 Hz, 2H), 6.41 (d, *J*= 16.2 Hz, 1H), 7.34-7.36 (m, 2H), 7.45 (d, *J*=8.4 Hz, 2H), 7.63 (d, *J*= 16.2Hz, 1H). ¹³CNMR (75MHz, CDCl₃): $\delta_{\rm C}$ (ppm) 13.7, 19.1, 30.7, 64.5, 118.9, 129.1, 129.1, 132.9, 136.0, 143.0, 166.7.

(E)-Butyl-3-p-tolylacrylate (Table 8, entry 9):

Yellow colored liquid, ¹HNMR (CDCl₃, 300 MHz) $\delta_{\rm H}$ (ppm) 0.98 (t, 3H, *J*=7.5 Hz), 1.42-1.50 (m, 2H), 1.68-1.76 (m, 2H), 2.39 (s, 3H), 4.22 (t, *J*=6.6 Hz, 2H), 6.41(d, *J*=15.9 Hz, 1H), 7.20 (d, *J*=7.8 Hz, 2H), 7.44 (d, *J*=8.1Hz, 2H), 7.68 (d, *J*=16.2Hz, 1H). ¹³C NMR (75MHz, CDCl₃): $\delta_{\rm C}$ (ppm) 13.7, 19.2, 30.8, 64.3, 117.2, 128.0, 129.6, 131.7, 140.5, 144.5, 167.2. (*E*)-Butyl-3-(4-methoxyphenyl)acrylate (Table 8, entry 10):

White solid. ¹HNMR (CDCl₃, 300 MHz) $\delta_{\rm H}$ (ppm) 0.98 (t, 3H, *J*=7.2Hz,), 1.41-1.51 (m, 2H), 1.64-1.74 (m, 2H), 3.83 (s, 3H), 4.21 (t, 2H, *J*=6.6 Hz), 6.32 (d, *J*= 15.9 Hz, 1H), 6.91 (d, 2H, J=8.7 Hz), 7.48 (d, 2H, *J*=8.7 Hz), 7.65 (d, 1H, *J*= 15.9 Hz). ¹³CNMR (75MHz, CDCl₃): $\delta_{\rm C}$ (ppm) 13.7, 19.21, 30.8, 85.3, 64.27, 114.3, 115.7, 129.6, 144.2, 161.3, 167.4.

Table 2. entry 1. ¹H NMR spectrum of 4-Phenyl benzophenone

 Table 2. entry 1.
 ¹³C NMR spectrum of 4-Phenyl benzophenone

 Table 2. entry 2. ¹H NMR Spectrum of (4-(Naphthalen-1-yl)phenyl)(phenyl)methanone

Table 2. entry 2. ¹³C NMR Spectrum of (4-(Naphthalen-1-yl)phenyl)(phenyl)methanone

 Table 2. entry 2. Mass Spectrum of (4-(Naphthalen-1-yl)phenyl)(phenyl)methanone.

Table 2. entry 3. ¹H NMR spectrum of (4'-Fluorobiphenyl-4- yl)(phenyl)methanone

Table 2. entry 3. ¹³C NMR spectrum of (4'-Fluorobiphenyl-4-yl)(phenyl)methanone

 Table 2. entry 3. Mass spectrum of (4'-Fluorobiphenyl-4-yl)(phenyl)methanone

 Table 2. entry 5. ¹H NMR spectrum of 4-Acetyl biphenyl

 Table 2. entry 5. ¹³C NMR spectrum of 4-Acetyl biphenyl

 Table 2. entry 6. ¹H NMR spectrum of 1-(4-(Naphthalen-1-yl)phenyl)ethanone

 Table 2. entry 6. ¹³C NMR spectrum of 1-(4-(Naphthalen-1-yl)phenyl)ethanone

 Table 2. entry 6. Mass spectrum of 1-(4-(Naphthalen-1-yl)phenyl)ethanone

 Table 2. entry 8. ¹H NMR spectrum of 4-(naphthalen-5-yl)benzaldehyde

 Table 2. entry 8.¹³C NMR spectrum of 4-(naphthalen-5-yl)benzaldehyde

 Table 2. entry 10.¹H NMR Spectrum of 2,6-Diphenylpyridine

Table 2. entry 10. ¹³C NMR spectrum of 2,6-Diphenylpyridine

Table 2. entry 17. ¹H NMR spectrum of 1-Phenyl-9H-fluorene

Table 2 entry 17. ¹³C NMR spectrum of 1-Phenyl-9H-fluorene

Table 2. entry 17. Mass spectra of 1-Phenyl-9H-fluorene

 Table 4. entry 5. ¹H NMR spectrum of 4-Nitro-1,1'-biphenyl

 Table 4. entry 5. ¹³C NMR spectrum of 4-Nitro-1,1'-biphenyl

 Table 4. entry 5. Mass spectrum of 4-Nitro-1,1'-biphenyl

 Table 4. entry 7. ¹H NMR spectrum of 1-(4-Nitrophenyl)naphthalene

 Table 4. entry 7. ¹³C NMR spectrum of 1-(4-Nitrophenyl)naphthalene

 Table 4. entry 7. Mass Spetrum of 1-(4-Nitrophenyl)naphthalene

 Table 4. entry 8. ¹H NMR spectrum of 4-Methoxybiphenyl

 Table 4. entry 8. ¹³C NMR spectrum of 4-Methoxy

 Table 4. entry 10. ¹H NMR spectrum of 1-(4-Methoxyphenyl)naphthalene

Table 4. entry 10. ¹³C NMR spectrum of 1-(4-Methoxyphenyl)naphthalene

 Table 4. entry 10. Mass spectrum of 1-(4-Methoxyphenyl)naphthalene

Table 6. entry 3. ¹H NMR spectrum of (Naphthalene-1-yl)(phenyl)methanone

Table 6. entry 3. ¹³C NMR spectrum of (Naphthalene-1-yl)(phenyl)methanone

 Table 6. entry 6. ¹H NMR spectrum of (Naphthalene-3-yl)(4-nitrophenyl)methanone

 Table 6. entry 6. ¹³C NMR spectrum of (Naphthalene-3-yl)(4-nitrophenyl)methanone

 Table 6. entry 6. Mass spectrum of (Naphthalene-3-yl)(4-nitrophenyl)methanone

 Table 8. entry 1.¹H NMR spectrum of (E)-Methyl 3-(4-nitrophenyl)acrylate

Table 8. entry 1. ¹³C NMR spectrum of (*E*)-Methyl 3-(4-nitrophenyl)acrylate

 Table 8. entry 1. Mass spectrum of (E)-Methyl 3-(4-nitrophenyl)acrylate.

 Table 8. entry 2. ¹H NMR spectrum of (E)-Methyl cinnamate

 Table 8. entry 2. ¹³C NMR spectrum of (E)-Methyl cinnamate

 Table 8. entry 4. ¹H NMR spectrum of (E)-Methyl-3-p-tolylacrylate.

 Table 8. entry 4. ¹³C NMR spectrum of (E)-Methyl-3-p-tolylacrylate

 Table 8. entry 5. ¹H NMR spectrum of (E)-Methyl-3-(4-metoxyphenyl)acrylate

Table 8. entry 5. ¹³C NMR spectrum of (*E*)-Methyl-3-(4-metoxyphenyl)acrylate

 Table 8. entry 5. Mass spectrum of (E)-Methyl-3-(4-metoxyphenyl)acrylate

 Table 8. entry 6.¹H NMR spectrum of (E)-butyl 3-(4-nitrophenyl)acrylate

 Table 8. entry 6. ¹³C NMR spectrum of (E)-butyl 3-(4-nitrophenyl)acrylate

Table 8. entry 6. Mass spectrum of (E)-butyl 3-(4-nitrophenyl)acrylate

 Table 8. entry 8. ¹H NMR spectrum of (E)-butyl 3-(4-chlorophenyl)acrylate.

 Table 8. entry 8. ¹³C NMR spectrum of (E)-butyl 3-(4-chlorophenyl)acrylate

 Table 8. entry 10. ¹H NMR spectrum of (E)-butyl-3-(4-methoxyphenyl)acrylate

 Table 8. entry 10. ¹³C NMR spectrum of (E)-butyl-3-(4-methoxyphenyl)acrylate