Electronic Supplementary Information

Ferromagnetic α-Fe₂O₃ NPs: A potential catalyst in Sonogashira Hagihara cross coupling and Hetero-Diels-Alder reactions

Meenal Kataria, Subhamay Pramanik, Navleen Kaur, Manoj Kumar, Vandana Bhalla,*

Department of Chemistry, UGC Sponsored Centre for Advanced Studies-1, Guru Nanak Dev University, Amritsar 143005, and Punjab, India

E-mail: vanmanan@yahoo.co.in

vanmanan@yahoo.co.in

- **S4-S5** Table S1: Comparison of catalytic activity of *in situ* α-Fe₂O₃ nanoparticles for synthesis of C-C cross coupling products by Sonogashira Hagihara reaction over other procedures reported in literature.
- **S6** Table S2: Comparison of catalytic activity of *in situ* α -Fe₂O₃ nanoparticles for synthesis of pyran derivatives by hetero Diels Alder reaction over other procedures reported in literature.
- **S7** Table S3: Comparison table between the present catalytic system and previously reported system (*Angew. Chem. Int. Ed.* 2008, **47**, 4862.).
- **S8** UV-vis spectroscopic titration of derivative **1** (5 μ M) in H₂O/EtOH (7:3, v/v) upon the addition Fe³⁺ ions (0-25 equiv.) and fluorescence emission spectra of derivative **1** (5 μ M) upon additions of 25 equiv. of 70 wt% *tert*-butyl hydroperoxide solution in H₂O/THF (3/7, v/v).
- **S9** Fluorescence spectroscopic titration of derivative **1** (5 μ M) in H₂O/EtOH (7:3, v/v) upon the addition Fe³⁺ ions (0-25 equiv.) and UV-vis spectra showing the presence of Fe (0) nanoparticle bands.
- S10 UV-vis spectroscopic titration of derivative 1 (5 μ M) in H₂O/EtOH (7:3, v/v) upon additions of 25 equiv. of 70 wt% *tert*-butyl hydroperoxide solution in H₂O/THF (3/7, v/v) and Scheme showing the formation of oxidized species of derivative 1 on the addition of oxidizing agent.
- S11 Overlay of NMR spectra of oxidized species of derivative1 and derivative1.
- S12 Overlay of IR spectra of both oxidized species of derivative 1and derivative 1.

- S13 ESI-MS mass spectra of oxidized species of derivative 1 and TEM, DLS analysis of derivative 1 (5 μ M) showing the size of Fe₂O₃ nanorods at temperature 70°C
- S14 TEM , DLS of derivative 1 (5 μ M) showing the size of Fe₂O₃ nanorods at pH (12) and UV-vis spectroscopic titration of derivative 1 (5 μ M) in H₂O/EtOH (7:3, v/v) by varying Fe³⁺ ions to ligand ratio
- S15 TEM images and Raman spectra of α -Fe₂O₃ nanoparticles prepared by commercial method.
- **S16** XRD pattern of spherical α -Fe₂O₃ nanoparticles prepared by commercial method.
- **S17** UV-vis spectra of reaction mixture show the interaction between substrates & catalyst and UV-vis spectra of reaction mixture showing the completion of reaction.
- **S18** Kinetic profile showing the formation of product with time when the catalyst loading is 0.005 mol & 0.004 mol.
- **S19** Kinetic profile showing the formation of product with time when the catalyst loading is 0.0035 mol & 0.0025 mol.
- S20 Kinetic profile showing the formation of product with time when the catalyst loading is 0.0015 mol.
- S21 Photograph showing the magnetic separation of *in situ* generated α -Fe₂O₃ nanoparticles.
- S22 XRD & TEM images of recycled α -Fe₂O₃ nanoparticles.
- **S23** Atomic Absorption Studies (AAS) of the residual liquid left after the magnetic separation of catalyst.
- S24 IR spectra of (A) *p*-nitrobenzaldehyde (B) separated reaction mixture containing *p*-nitrobenzaldehyde and in situ generated α -Fe₂O₃ NPs
- S25 ¹H and ¹³C NMR of spectrum of 4a.
- S26 ¹H and ¹³C NMR of spectrum of 4b and 4c.
- S27 ¹H and ¹³C NMR of spectrum of 4d.
- S28 ¹H and ¹³C NMR of spectrum of 4e.
- S29 1 H and 13 C NMR of spectrum of 4f.

S30	¹ H and ¹³ C NMR of spectrum of 4g .
S31	¹ H and ¹³ C NMR of spectrum of 4h .
S32	¹ H and ¹³ C NMR of spectrum of 4i .
S33	¹ H and ¹³ C NMR of spectrum of 4j .
S34	¹ H and ¹³ C NMR of spectrum of 4k .
S35	¹ H and ¹³ C NMR of spectrum of 4 I.
S36	¹ H and ¹³ C NMR of spectrum of 4m .
S37	¹ H and ¹³ C NMR of spectrum of 6 .
S38	¹ H and ¹³ C NMR of spectrum of 8.
S39	¹ H and ¹³ C NMR of spectrum of 14a.
S40	¹ H and ¹³ C NMR of spectrum of 14b.
S41	¹ H and ¹³ C NMR of spectrum of 14c.
S42	¹ H and ¹³ C NMR of spectrum of 14d.
S43	¹ H and ¹³ C NMR of spectrum of 14e.
S44	¹ H and ¹³ C NMR of spectrum of 14f.
S45	¹ H and ¹³ C NMR of spectrum of 14g
S46	¹ H and ¹³ C NMR of spectrum of $14h$
S47	¹ H and ¹³ C NMR of spectrum of 14i.
S48	1 H and 13 C NMR of spectrum of 14j .
S49	^{1}H and ^{13}C NMR of spectrum of 15 .
S50	¹ H and ¹³ C NMR of spectrum of 16 .

Table S1: Comparison of catalytic activity of α -Fe₂O₃ NPs for Sonogashira cross coupling reaction over other catalytic system reported in the literature.

Seri al	Publication	Catalyst used	Use of Noble	Use of CuI	Use of Amine	Solvent	Nano catalysis	Recycling	Reaction time	Temp. required	Isolated Yield
No.			metal							(in °C)	(Product, %)
1	Present manuscript	α-Fe ₂ O ₃ , K ₂ CO ₃	No	No	No	Ethylene glycol (green solvent)	Yes	Yes (13 times)	13 h	80	84
2	Green Chem., 2015, 17 , 1893- 1898	Pd-CS, Pd-CS- Glu and Pd-CS- SH, K ₂ CO ₃	Yes	No	No	EtOH/Wa ter	Yes	Yes (6 times)	6 h	65	98
3	Green Chem., 2015, 17 , 1071- 1076	Pd/C, DABCO	Yes	No	Yes	γ- Valerolac tone	No	No	4 h	60-100	99
4	Green Chem., 2014, 16 , 2515- 2522	PEG-2000, PdCl ₂ (PPh ₃) ₂	Yes	No	Yes	Water, Et ₃ N	No	No	24 h	25	95
5	<i>Chem. Commun.,</i> 2015, 51 , 10871- 10874	L ₄ –Pd	Yes	No	Yes	DMF	No	Yes (5 times)	1.5 h	90	97
6	<i>Chem. Eur. J.</i> , 2014, 20 , 1-13	PEGylated g- Fe ₂ O ₃ -Pd NPs	Yes	No	Yes	THF	Yes	Yes	24 h	65	86
7	Org. Lett., 2014, 16, 3724-3727	(N-heterocyclic carbene)-Cu and (N-heterocyclic carbene)-Pd complexes	Yes	Yes	No	DMSO	No	No	24 h	120	94
8	J. Mater. Chem. A, 2014, 2 , 484-491	$\begin{array}{c} Pd-PPh_2-\\ MCM-\\ 41@SiO_2@Fe_3\\ O_4(Very\\ complicated) \end{array}$	Yes (Pd)	No	No	Water	No	Yes	4 h	70	95
9	<i>Org. Lett.</i> , 2013, 15 , 65-67	Pd-Cu dual Reactor	Yes	Yes	No	DMF	No	No	-	120	95
10	Angew. Chem. Int. Ed. 2013, 52 , 11554-11559	Pd(0) nanoparticle, KOAc	Yes (Pd)	No	Yes	NMP (toxic)	Yes	No	24 h	160	83
11	Green Chem., 2013, 15 , 2349- 2355	Pd catalyst, K ₂ CO ₃	Yes (Pd)	No	No	EtOH/Ch lorobenze ne (flammab le)	No	Yes	18 h	60	88
12	Green Chem., 2013, 15 , 2132- 2042	Fe ₃ O ₄ @- SiO ₂ @PPh ₂ @P d(0), NaOH (Very complicated)	Yes (Pd)	No	No	Water	No	Yes	15 min-4 h	80	91
13	<i>Chem. Eur. J.,</i> 2013, 19 , 14024- 14029	5% Pd-Au/C, K ₃ PO ₄	Yes (Pd, Au)	No	No	<i>i</i> PrOH/ H ₂ O	No	No	20 h	80	73

14	Adv. Synth. Catal., 2011, 353 , 125-	Fe ₃ O ₄	No	No	No	Ethylene glycol	Yes	Yes	35h	125	92
	132										
15	Chem. Commun.,	Pd@meso-SiO ₂	Yes	No	No	EtOH	No	Yes	30 h	80	55
	2010, 46 , 6524-	(Very	(Pd)								
	6526	complicated)									
16	Angew. Chem. Int.	Au(I), K ₃ PO ₄	Yes	No	No	O-Xylene	No	No	24 h	130	54
	Ed. 2007, 46 ,		(Au)								
	1536-1538										
17	Langmuir, 2010,	Au-Ag-Pd	Yes	No	No	DMF-	No	No	2 h	120	94
	14, 12225-12229	trimetallic	(Pd, Au,			H ₂ O					
		nanoparticles	Ag)								
18	Org. Lett., 2,	Pd(PPh ₃) ₂ ,	Yes	No	No	THF	No	No	8 h	60	60
	2000, 2935-2938	Ag ₂ O	(Pd, Ag)								

Sr. No.	Publication	Catalyst Used	Use of noble metal	Cost of catalyst	Use of Nano catalyst	Amount of Catalyst used	Use of activated diene/die nophile	Solvent	Additives	Tem p. (°C)	Time	Yield %	Recycl ability
1	Present manuscript	α-Fe ₂ O ₃ NPs	No	Very cheap	Yes	1 mol %	No	<i>p</i> -xylene (90%)/Neat condition (68%)	No	60	10h	Upto 90%	Yes
2	<i>Org. Lett.</i> , 2015, 17 , 3506-3509	LiClO ₄	No	Costly	No	1 equiv.	Yes	DCE/MeCN	Yes	80	2h	94	No
3	<i>Org. Lett.</i> , 2015, 17 , 3536-3539	CuI in 4Å MS	No	Costly and Sensitive	No	10 mol%	Yes	THF/t-BuOH (1:1)	Yes (Et ₄ NI, Cs ₂ CO ₃)	25	1-48	90	No
4	J. Am. Chem. Soc. 2014, 136 , 17714–177 17	PCN-223 porphyrinic ZrMOF	Yes	Costly	No	1 mol%	No	Toluene	AgBF ₄	80	12 h	99	Yes
5	Chem. Commun., 2014, 50 , 14187- 14190	Calcium BINOL- derived phosphates	No	Yes	No	2.5 mol%	Yes	DCM	HCI	Rt	12h	94%	No
6	<i>Org. Lett.</i> , 2014, 16 , 3564-3567	Cu(I)OTF ₂ L	No	-	No	10 mol%	Yes	Toluene	Base	0°C	Upto 24h	→ 90%	No
7	<i>Org. Lett.,</i> 2013, 15 , 9-12	Rh(cod) ₂ BF ₄	Yes	costly	No	5 mol %	No	DCM	Acid	80°C	Upto 24h	Upto 90 %	No
8	J. Am. Chem. Soc., 2012, 134 , 5512-5515	Iron(III) porphyrin catalyst	No		No		No	Benzene- upto 90%/ Neat condition- trace yield	No	80°C	12h	Upto 90%	
9	J. Am. Chem. Soc., 2009, 131 , 12882- 12883	Chiral phosphoric acid	No	Yes	No	2-100 mol%	Yes	Toluene	-	RT	24 h	Upto 95 %	
10	<i>Org.</i> <i>Lett.,2008,</i> 10 , 13-16	1-Np- TADDOL	No	-	No	20 mol%	Yes	Toluene/DCM	Acid chloride	-78°C	15 min		No
11	<i>Org. Lett.,</i> 2004, 6 , 13- 16	Ti(OiPr) ₄	No	costly	No	5 mol %	Yes	Toluene	TFA	0°C	72 h	Upto 92%	No
12	<i>Org. Lett.</i> , 2003, 5 , 7- 10	Diethyl Zinc	No	-	No	10 mol%	Yes	Toluene	Acid	-20°C	30 h	Upto 99 %	No

Table S2: Comparison of catalytic activity of α -Fe₂O₃ NPs for hetero-Diels–Alder reaction over other catalytic system reported in literature.

Sr. No.	Points	Present Manuscript	Angew. Chem. Int. Ed. 2008,
	of Comparison		47, 4862-4865
	on Reaction Conditions		
1.	Reactivity towards	Both for aryl iodides	Only for aryl Iodides
	Substrates	and bromides	
2.	Recyclability of catalyst	Yes (13 times)	No
3.	Mechanistic Study	Yes	No
4.	Base	K_2CO_3 (mild,	Cs_2CO_3 (Strong,
		Cheap)	Costly)
5.	Time	13-24 h	72 h
6.	Solvent	Ethylene Glycol	Toluene
		(green solvent)	
7.	Catalyst Loading	Low catalyst loading	High catalyst loading
		(0.5 mol %)	(15 mol %)

Table S3: Comparison table between the present catalytic system and previously reported system for Sonogashira coupling reactions (*Angew. Chem. Int. Ed.* 2008, **47**, 4862-4865).

Figure S1: UV-vis. spectroscopic spectra of derivative 1 (5 μ M) in H₂O/EtOH (7:3, v/v) upon the addition Fe³⁺ ions (0-25 equiv.).

Figure S2: Fluorescence spectra of derivative 1 (5 μ M) after the addition of equal aliquots of *tert*-butyl hydroperoxide (a oxidizing agent) in H₂O/EtOH (7:3, v/v) mixture.

Figure S3: Fluorescence spectra of derivative 1 (5 μ M) showing the variation on addition of Fe³⁺ ions (0-25 equiv.) in H₂O/EtOH (7:3, v/v) mixture.

Figure S4: UV-vis Spectra showing the formation of Fe (0) Nps bands after keeping the solution of derivative **1** and Fe³⁺ ion (0-25 equiv.) in H₂O/EtOH (3:7, v/v) mixture under inert atmosphere for 10 min and followed by oxidation resulting in the *in situ* formation of Fe₂O₃ nanoparticles

Figure S5: UV-vis Spectra of derivative **1** on addition of *tert*- butyl hydroperoxide (0-25 equiv.) in H₂O/EtOH (3:7, v/v) mixture followed by the addition of Fe³⁺ ion (0-25 equiv.).

Scheme 1: Oxidation of derivative 1 by using t BuOOH to yield N-oxide derivative.

Figure S6: Overlay of ¹H NMR spectra of derivative **1** and oxidized species of derivative **1** showing the upfield shifting of all protons.

Figure S7: FT-IR spectrum of oxidized deivative 1 showed stretching band at around 1340 cm^{-1} corresponding to N⁺-O⁻ stretching frequency.

Figure S8: ESI-MS mass spectrum of residue obtained showed a parent ion peak, m/z = 1043 due to oxidized species of derivative **1**.

Figure S9: (A) TEM (Scale bar 20 nm) and (**B**) DLS analysis of compound **1** (5 μ M) showing the size of Fe₂O₃ nanoparticles at temperature 70°C in the range of 60-80 nm.

Figure S10: (A) TEM (Scale bar 50 nm) and (B) DLS analysis of compound 1 (5 μ M) showing the size of Fe₂O₃ nanoparticles in the presence of sodium hydroxide (pH=12) in the range of 50-60 nm.

Figure S11: UV-vis. spectra by varying Fe^{3+} ions to ligand ratio a) 2:1, b) 1:1, c) 1:2.

Figure S12: A) TEM images of spherical α -Fe₂O₃ NPs prepared by literature reported method (*J. Mater. Chem. A*, 2013, **1**, 830) B) DLS analysis showing the size of α -Fe₂O₃ NPs 4-6 nm.

Figure S13: Raman spectrum of spherical α -Fe₂O₃ NPs prepared by literature reported method (*J. Mater. Chem. A*, 2013, **1**, 830); [Refrence 1: *CrystEngComm.*, 2014, **16**, 10618].

Figure S14: (a-b) XRD diffraction pattern of spherical α -Fe₂O₃ NPs prepared by commercial reported method.

Figure S15: UV-vis. Spectra recorded during the reaction of 1a and 2a in the presence of in situ generated Fe₂O₃ NPs in ethylene glycol.

Figure S16: UV-vis spectra of reaction between 1a and 2a showing the completion of reaction to give product 4a catalysed by $Fe_2 O_3$ NPs when the catalyst loading was 0.005 mol.

Figure S17: (a) Kinetic profile showing the formation of product with time when the catalyst loading is 0.005 mol; (b) calibration curve. Reactions were monitored by UV-vis. Spectroscopy.

Multiple R= 0.995 $R^2 = 0.991$ Slope = 0.150 Rate = (2.303×0.150)/3600 = 0.959×10⁻⁴ sec⁻¹

Figure S18: (a) Kinetic profile showing the formation of product with time when the catalyst loading is 0.004 mol, (b) calibration curve. Reactions were monitored by UV-vis. Spectroscopy.

Multiple R= 0.996 $R^2 = 0.992$ Slope = 0.128 Rate = (2.303×0.128)/3600 = 0.818×10⁻⁴ sec⁻¹

Figure S19: (a) Kinetic profile showing the formation of product with time when the catalyst loading is 0.0035 mol, (b) calibration curve. Reactions were monitored by UV-vis. Spectroscopy.

Figure S20: (a) Kinetic profile showing the formation of product with time when the catalyst loading is 0.0025 mol, (b) calibration curve. Reactions were monitored by UV-vis. spectroscopy.

Multiple R= 0.9901 $R^2 = 0.981$ Slope = 0.093 Rate = (2.303×0.093)/3600 = 0.59×10⁻⁴ sec⁻¹

Figure S21: (a) Kinetic profile showing the formation of product with time when the catalyst loading is 0.0015 mol, (b) calibration curve. Reactions were monitored by UV-vis. Spectroscopy.

Multiple R= 0.988

$$R^2 = 0.977$$

Slope = 0.064
Rate = (2.303×0.064)/3600 = 0.409×10⁻⁴ sec⁻¹

(a) Sonogashira cross coupling reaction

(a) Hetero-Diels-Alder reaction

Figure S22: α -Fe₂O₃ nanoparticles (a) for Sonogashira cross coupling reaction i) dispersed in the reaction mixture, ii) adsorbed on a magnetic stirring bar, iii) an external magnet attracted stirring bar and α -Fe₂O₃ nanoparticles; (b) for Hetero-Diels-Alder reaction i) dispersed in the reaction mixture, ii) adsorbed on a magnetic stirring bar, iii) an external magnet attracted stirring bar and α -Fe₂O₃ nanoparticles; (b) for Hetero-Diels-Alder reaction i) dispersed in the reaction mixture, ii) adsorbed on a magnetic stirring bar, iii) an external magnet attracted stirring bar and α -Fe₂O₃ nanoparticles.

Figure S23: XRD of *in situ* generated rod like α -Fe₂O₃ NPs separated after 13 cycles recycling.

Figure S24: TEM image of *in situ* generated rod like α -Fe₂O₃ NPs separated after 13 cycles.

SpectrAA Repo	13:23 21-08-2015								
Analyst Date Started Worksheet Comment Methods Computer name Serial Number:	12:44 21-08-2015 GM fe210815 Fe HP-PC	Г: 07:14 21-	08-2015						
	Method: Fe (Flame)								
Sample ID CAL ZERO		Conc mg/ 0.000 Readings	Ľ	%RSD 62.8	SD 0.0006	Mean A -0.0009	bs BG Abs 0.0010		
		-0.0015	-0.000	5	-0.0007		21-08-2015	12:49:34	
			ISF						
STANDARD 1		5.000 Readings	1.0000	1.9	0.0055	0.2947	0.0010		
		0.2886	0.2963	3	0.2993		21-08-2015	12:50:14	
			ISF 1.0000						
STANDARD 2		10.000 Readings		0.4	0.0022	0.5006	0.0027		
		0.5022	0.4981		0.5016		21-08-2015	12:50:48	
			ISF 1.0000						
STANDARD 3		15.000 Readings		1.0	0.0066	0.6595	0.0044		
		0.6563	0.6552	2	0.6671		21-08-2015	12:51:16	
Sample 001	l	0.166 Readings	1.0000	2.7	0.0003	0.0098	0.0418		
		0.0098	0.0096		0.0101		21-08-2015	12:57:40	1
			ISF 1.0000						

Figure S25: Atomic Absorption Studies (AAS) of the residual liquid left after the magnetic separation of catalyst and found that only 0.166 mg/lit = 0.166 ppm of iron leached into the solution.

Figure S26: IR spectra of (a) *p*-nitrobenzaldehyde; (b) separated reaction mixture containing *p*-nitrobenzaldehyde and α -Fe₂O₃ NPs.

Fig. S27A: ¹H NMR Spectra (CDCl₃, 500 MHz, ppm) of compound 4a:

Fig. S27B: ¹³C NMR Spectra (CDCl₃, 125 MHz, ppm) of compound 4a:

Fig. S28A: ¹H NMR Spectra (CDCl₃, 500 MHz, ppm) of compound 4b & 4c:

Fig. S28B: ¹³C NMR Spectra (CDCl₃, 125 MHz, ppm) of compound 4b & 4c:

Fig. S29A: ¹H NMR Spectra (CDCl₃, 500 MHz, ppm) of compound 4d:

Fig. S29B: ¹³C NMR Spectra (CDCl₃, 125 MHz, ppm) of compound 4d:

5.0 4.5 f1 (ppm)

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

Fig. S30A: ¹H NMR Spectra (CDCl₃, 300 MHz, ppm) of compound 4e:

Fig. S30B: ¹³C NMR Spectra (CDCl₃, 75 MHz, ppm) of compound 4e:

5.5

6.0

9.0

8.5

8.0

7.0

6.5

Fig. S31B: ¹³C NMR Spectra (CDCl₃, 75 MHz, ppm) of compound 4f:

Fig. S32B: ¹³C NMR Spectra (CDCl₃, 125 MHz, ppm) of compound 4g:

Fig. S33A: ¹H NMR Spectra (CDCl₃, 500 MHz, ppm) of compound 4h:

Fig. S33B: ¹³C NMR Spectra (CDCl₃, 125 MHz, ppm) of compound 4h:

Fig. S34B: ¹³C NMR Spectra (CDCl₃, 75 MHz, ppm) of compound 4i:

Fig. S35B: ¹³C NMR Spectra (CDCl₃, 75 MHz, ppm) of compound 4j:

Fig. S36A: ¹H NMR Spectra (CDCl₃, 300 MHz, ppm) of compound 4k:

Fig. S36B: ¹³C NMR Spectra (CDCl₃, 75 MHz, ppm) of compound 4k:

Fig. S37A: ¹H NMR Spectra (CDCl₃, 500 MHz, ppm) of compound 41:

Fig. S37B: ¹³C NMR Spectra (CDCl₃, 125 MHz, ppm) of compound 41:

Fig. S38A: ¹H NMR Spectra (CDCl₃, 500 MHz, ppm) of compound 4m:

Fig. S39A: ¹H NMR Spectra (CDCl₃, 500 MHz, ppm) of compound 6:

Fig. S39B: ¹³C NMR Spectra (CDCl₃, 125 MHz, ppm) of compound 6:

S37

Fig. S40A: ¹H NMR Spectra (CDCl₃, 500 MHz, ppm) of compound 8:

Fig. S40B: ¹³C NMR Spectra (CDCl₃, 125 MHz, ppm) of compound 8:

Fig. S41A: ¹H NMR Spectra (CDCl₃, 500 MHz, ppm) of compound 14a:

Fig. S41B: ¹³C NMR Spectra (CDCl₃, 125 MHz, ppm) of compound 14a:

Fig. S42A: ¹H NMR Spectra (CDCl₃, 500 MHz, ppm) of compound 14b:

Fig. S42B: ¹³C NMR Spectra (CDCl₃, 125 MHz, ppm) of compound 14b:

S40

Fig. S43A: ¹H NMR Spectra (CDCl₃, 500 MHz, ppm) of compound 14c:

Fig. S43B: ¹³C NMR Spectra (CDCl₃, 125 MHz, ppm) of compound 14c:

S41

Fig. S44 A: ¹H NMR Spectra (CDCl₃, 300 MHz, ppm) of compound 14d:

Fig. S44B: ¹³C NMR Spectra (CDCl₃, 125 MHz, ppm) of compound 14d:

S42

Fig. S45A: ¹H NMR Spectra (CDCl₃, 500 MHz, ppm) of compound 14e:

Fig. S45B: ¹³C NMR Spectra (CDCl₃, 125 MHz, ppm) of compound 14e:

Fig. S46A: ¹H NMR Spectra (CDCl₃, 500 MHz, ppm) of compound 14f:

Fig. S46B: ¹³C NMR Spectra (CDCl₃, 125 MHz, ppm) of compound 14f:

Fig. S47B: ¹³C NMR Spectra (CDCl₃, 125 MHz, ppm) of compound 14g:

Fig. S48A: ¹H NMR Spectra (CDCl₃, 500 MHz, ppm) of compound 14h:

Fig. S48B: ¹³C NMR Spectra (CDCl₃, 125 MHz, ppm) of compound 14h:

Fig. S49A: ¹H NMR Spectra (CDCl₃, 300 MHz, ppm) of compound 14i:

Fig. S49B: ¹³C NMR Spectra (CDCl₃, 125 MHz, ppm) of compound 14i:

Fig. S50A: ¹H NMR Spectra (CDCl₃, 300 MHz, ppm) of compound 14j:

Fig. S50B: ¹³C NMR Spectra (CDCl₃, 125 MHz, ppm) of compound 14j:

S48

Fig. S51: ¹H NMR Spectra (CDCl₃, 300 MHz, ppm) of compound 15:

Fig. S52A: ¹H NMR Spectra (CDCl₃, 300 MHz, ppm) of compound 16:

